Mixing of quantum states under Markovian dissipation and coherent control

Given any two quantum states $\rho$ and $\sigma$ in Hilbert spaces of equal dimension satisfying the majorization condition $\rho \succ \sigma$, it is always possible to transform $\rho \mapsto \sigma$ by a unital quantum map. In fact, any such transformation can be achieved just by means of noisy operations, i.e., by access to maximally mixed ancillary states and unitary transformations that act jointly in the system-ancilla space. Here, we investigate the possible transitions between states (i.e., the induced preorder of states) when one restricts the unitary control to the quantum system alone and replaces the maximally mixed ancillas with a Markovian master equation, represented by a unital Lindbladian. As a main result, we find necessary and sufficient conditions for the Lindbladian dissipation to have the same converting power as that of noisy operations, i.e., any transformation $\rho \mapsto \sigma$ is possible if and only if $\rho \succ \sigma$.

[1]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[2]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[3]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[4]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[5]  J. Eisert,et al.  Catalytic Quantum Randomness , 2018, Physical Review X.

[6]  Anthony M. Bloch,et al.  Steering the Eigenvalues of the Density Operator in Hamiltonian-Controlled Quantum Lindblad Systems , 2018, IEEE Transactions on Automatic Control.

[7]  Christopher Perry,et al.  All unital qubit channels are 4-noisy operations , 2018 .

[8]  Finite-bath corrections to the second law of thermodynamics. , 2017, Physical review. E.

[9]  Jonathan Oppenheim,et al.  A Sufficient Set of Experimentally Implementable Thermal Operations for Small Systems , 2015, Physical Review X.

[10]  F. Semião,et al.  Energy transport in the presence of entanglement , 2017, 1701.04135.

[11]  Jonathan Oppenheim,et al.  A Resource Theory for Work and Heat , 2016, ArXiv.

[12]  'Alvaro M. Alhambra,et al.  Elementary Thermal Operations , 2016, 1607.00394.

[13]  Markus P. Mueller,et al.  Quantum Horn's lemma, finite heat baths, and the third law of thermodynamics , 2016, 1605.06092.

[14]  J Eisert,et al.  Second law of thermodynamics under control restrictions. , 2016, Physical review. E.

[15]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[16]  Andreas Buchleitner,et al.  Optimal coherent control to counteract dissipation. , 2013, Physical review letters.

[17]  K. Życzkowski,et al.  Unitary quantum gates, perfect entanglers, and unistochastic maps , 2012, 1211.3287.

[18]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[19]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[20]  Haidong Yuan,et al.  Reachable set of operators on controlled open quantum systems in a Markovian environment , 2012, Syst. Control. Lett..

[21]  Thomas Schulte-Herbrüggen,et al.  Illustrating the Geometry of Coherently Controlled Unital Open Quantum Systems , 2011, IEEE Transactions on Automatic Control.

[22]  W. Marsden I and J , 2012 .

[23]  Fernando Pastawski,et al.  Quantum memories based on engineered dissipation , 2010, 1010.2901.

[24]  U. Haagerup,et al.  Factorization and Dilation Problems for Completely Positive Maps on von Neumann Algebras , 2010, 1009.0778.

[25]  Christine A Muschik,et al.  Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.

[26]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[27]  Uwe Helmke,et al.  Lie-semigroup structures for reachability and control of open quantum systems: kossakowski-lindblad generators form lie wedge to markovian channels , 2009 .

[28]  Masoud Mohseni,et al.  Environment-assisted quantum transport , 2008, 0807.0929.

[29]  A. L. Approach,et al.  Controllability Aspects of The Lindblad-Kossakowski Master Equation , 2009 .

[30]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[31]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[32]  Constantin Brif,et al.  Controllability of open quantum systems with Kraus-map dynamics , 2006, quant-ph/0611215.

[33]  H. Jirari,et al.  Optimal coherent control of dissipative N-level systems (12 pages) , 2005 .

[34]  Claudio Altafini,et al.  Coherent control of open quantum dynamical systems , 2004 .

[35]  K. Życzkowski,et al.  On Duality between Quantum Maps and Quantum States , 2004, Open Syst. Inf. Dyn..

[36]  M. Horodecki,et al.  Reversible transformations from pure to mixed states and the unique measure of information , 2002, quant-ph/0212019.

[37]  C. Altafini QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.

[38]  S. Schirmer,et al.  Criteria for reachability of quantum states , 2001, quant-ph/0110171.

[39]  Michael A. Nielsen,et al.  Majorization and the interconversion of bipartite states , 2001, Quantum Inf. Comput..

[40]  M. Plenio,et al.  Entanglement-Assisted Local Manipulation of Pure Quantum States , 1999, quant-ph/9905071.

[41]  R. Bhatia Matrix Analysis , 1996 .

[42]  Physical Review Letters 63 , 1989 .

[43]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[44]  Tosio Kato Perturbation theory for linear operators , 1966 .

[45]  R. Stephenson A and V , 1962, The British journal of ophthalmology.