Electronic structure measurements of dense plasmas

This paper presents an improved analytical expression for the x-ray dynamic structure factor from a dense plasma which includes the effects of weakly bound electrons. This result can be applied to describe scattering from low to moderate Z plasmas, and it covers the entire range of plasma conditions that can be found in inertial confinement fusion experiments, from ideal to degenerate up to moderately coupled systems. The theory is used to interpret x-ray scattering experiments from solid density carbon plasmas and to extract accurate measurements of electron temperature, electron density, and charge state. The experimental results are applied to validate various equation-of-state models for carbon plasmas.

[1]  N. Arimitsu,et al.  Dynamic structure factor S(q,ω) of metallic lithium by x-ray inelastic scattering , 1989 .

[2]  D. Pines A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions , 1952 .

[3]  Probing ion-ion and electron-ion correlations in liquid metals within the quantum hypernetted chain approximation , 1999, cond-mat/9909116.

[4]  Y. Ohmura,et al.  Theory of X-Ray Raman Scattering , 1967 .

[5]  P. Eisenberger,et al.  Compton Scattering of X Rays from Bound Electrons , 1970 .

[6]  S. Ichimaru,et al.  Statistical Plasma Physics , 1992 .

[7]  Junzo Chihara,et al.  Interaction of photons with plasmas and liquid metals - photoabsorption and scattering , 1999, cond-mat/9909372.

[8]  O. Landen,et al.  Theoretical model of x-ray scattering as a dense matter probe. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  C. Blancard,et al.  Combined pressure and electrical-resistivity measurements of warm dense aluminum and titanium plasmas. , 2002, Physical review letters.

[10]  Redmer,et al.  Transport coefficients for dense metal plasmas , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  R. Redmer ELECTRICAL CONDUCTIVITY OF DENSE METAL PLASMAS , 1999 .

[12]  D. Young,et al.  VALIDATION OF THE ACTIVITY EXPANSION METHOD WITH ULTRAHIGH PRESSURE SHOCK EQUATIONS OF STATE , 1997 .

[13]  Perrot,et al.  Simple classical mapping of the spin-polarized quantum electron gas: distribution functions and local-field corrections , 1999, Physical review letters.

[14]  D. Evans,et al.  Laser light scattering in laboratory plasmas , 1969 .

[15]  R. H. Pratt,et al.  An overview of the theories used in compton scattering calculations , 1997 .

[16]  O. Landen,et al.  Demonstration of spectrally resolved x-ray scattering in dense plasmas. , 2003, Physical review letters.

[17]  J. Chihara Difference in X-ray scattering between metallic and non-metallic liquids due to conduction electrons , 1987 .

[18]  C. Deutsch,et al.  Classical modelization of symmetry effects in the dense high-temperature electron gas , 1978 .

[19]  A. B. Zamolodchikov,et al.  Exact S matrix of Gross-Neveu “elementary” fermions , 1978 .

[20]  A. Davletov,et al.  SCREENED PSEUDOPOTENTIAL AND STATIC STRUCTURE FACTORS OF SEMICLASSICAL TWO-COMPONENT PLASMAS , 1998 .

[21]  E. Feenberg,et al.  Theory of Quantum Fluids , 1970 .

[22]  Reginald W. James,et al.  The Optical principles of the diffraction of X-rays , 1948 .

[23]  Holm,et al.  First correction to the nonrelativistic Compton cross section in the impulse approximation. , 1989, Physical review. A, General physics.

[24]  J. Herron Thermochemical Data on Gas Phase Compounds of Sulfur, Fluorine, Oxygen, and Hydrogen Related to Pyrolysis and Oxidation of Sulfur Hexafluoride , 1987 .

[25]  B. J. Bloch,et al.  Comparison of methods for calculating atomic shielding factors , 1975 .

[26]  Du Mond,et al.  Compton modified line structure and its relation to the electron theory of solid bodies , 1929 .

[27]  Tung,et al.  Analytic functions for atomic momentum-density distributions and Compton profiles of K and L shells. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[28]  Gregory A. Moses,et al.  Inertial confinement fusion , 1982 .

[29]  C. Deutsch Nodal expansion in a real matter plasma , 1977 .

[30]  Edwin E. Salpeter,et al.  ELECTRON DENSITY FLUCTUATIONS IN A PLASMA , 1960 .

[31]  M. Dharma-wardana,et al.  Spin-polarized electron liquid at arbitrary temperatures: Exchange-correlation energies, electron-distribution functions, and the static response functions , 2000 .

[32]  F. Gasser,et al.  Atomic K- and L-shell Compton defects for the study of electronic structures , 1983 .

[33]  O. Landen,et al.  Strong coupling corrections in the analysis of x-ray Thomson scattering measurements , 2003 .

[34]  J. Knauer,et al.  The Role of the Laboratory for Laser Energetics in the National Ignition Facility Project , 1996 .

[35]  Forrest J. Rogers,et al.  Ionization equilibrium and equation of state in strongly coupled plasmas , 2000 .

[36]  P. Suortti,et al.  Experimental Compton-scattering cross sections for Si and Ge , 1974 .

[37]  Otto L. Landen,et al.  X-ray scattering from solid density plasmas , 2003 .

[38]  Bruce A. Hammel,et al.  Dense matter characterization by X-ray Thomson scattering , 2001 .

[39]  Weaver,et al.  X-Ray diffraction from a dense plasma , 2000, Physical review letters.

[40]  Bradley,et al.  Time-resolved continuum-edge-shift measurements in laser-shocked solids. , 1987, Physical review letters.

[41]  B. J. Bloch,et al.  Atomic L -shell Compton profiles and incoherent scattering factors: Theory , 1973 .

[42]  A. Kirfel,et al.  New analytical scattering‐factor functions for free atoms and ions , 1995 .

[43]  Lévy,et al.  Compton scattering beyond the impulse approximation: Application to the core electrons of carbon. , 1988, Physical review. A, General physics.

[44]  F. Bell On the Compton defect , 1986 .

[45]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .