Dissecting the genotype in syndromic intellectual disability using whole exome sequencing in addition to genome-wide copy number analysis

[1]  B. V. van Bon,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, The New England journal of medicine.

[2]  D. Horn,et al.  Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study , 2012, The Lancet.

[3]  Donna M. Martin,et al.  Phenotypic heterogeneity of genomic disorders and rare copy-number variants. , 2012, The New England journal of medicine.

[4]  B. Loeys,et al.  Marfan syndrome: from gene to therapy , 2012, Current opinion in pediatrics.

[5]  M. King,et al.  Response to DNA damage of CHEK2 missense mutations in familial breast cancer. , 2012, Human molecular genetics.

[6]  S. Bhatt,et al.  Microdeletion and Microduplication Syndromes , 2012, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[7]  Y. Bignon,et al.  CHEK2 contribution to hereditary breast cancer in non-BRCA families , 2011, Breast Cancer Research.

[8]  J. Shendure,et al.  Exome sequencing as a tool for Mendelian disease gene discovery , 2011, Nature Reviews Genetics.

[9]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[10]  F. Quintero-Rivera,et al.  B‐Acute lymphoblastic leukemia and cystinuria in a patient with duplication 22q11.21 detected by chromosomal microarray analysis , 2011, Pediatric blood & cancer.

[11]  R. Heller,et al.  Uniparental disomies 7 and 14. , 2011, Best practice & research. Clinical endocrinology & metabolism.

[12]  R. Salomon,et al.  Mutation screening of the EYA1, SIX1, and SIX5 genes in a large cohort of patients harboring branchio‐oto‐renal syndrome calls into question the pathogenic role of SIX5 mutations , 2011, Human mutation.

[13]  R. Marschalek Mechanisms of leukemogenesis by MLL fusion proteins , 2011, British journal of haematology.

[14]  J. Hopper,et al.  Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study , 2011, Breast Cancer Research.

[15]  Christian Gilissen,et al.  A de novo paradigm for mental retardation , 2010, Nature Genetics.

[16]  M. Emond,et al.  The human WRN and BLM RecQ helicases differentially regulate cell proliferation and survival after chemotherapeutic DNA damage. , 2010, Cancer research.

[17]  Laurence Faivre,et al.  The revised Ghent nosology for the Marfan syndrome , 2010, Journal of Medical Genetics.

[18]  Daniel Rios,et al.  Bioinformatics Applications Note Databases and Ontologies Deriving the Consequences of Genomic Variants with the Ensembl Api and Snp Effect Predictor , 2022 .

[19]  Alan S. Kaufman,et al.  Kaufman Assessment Battery for Children , 2010 .

[20]  L. Vissers,et al.  Genomic microarrays in mental retardation: from copy number variation to gene, from research to diagnosis , 2009, Journal of Medical Genetics.

[21]  Emily H Turner,et al.  Targeted Capture and Massively Parallel Sequencing of Twelve Human Exomes , 2009, Nature.

[22]  A. Madden Anthropometric Standards: An interactive nutritional reference of body size and body composition for children and adults , 2009 .

[23]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[24]  J. Ehrich,et al.  SMARCAL1 Mutations: A Cause of Prepubertal Idiopathic Steroid-resistant Nephrotic Syndrome , 2009, Pediatric Research.

[25]  M. Portnoï Microduplication 22q11.2: a new chromosomal syndrome. , 2009, European journal of medical genetics.

[26]  P. Robinson,et al.  Clinical and Molecular Study of 320 Children With Marfan Syndrome and Related Type I Fibrillinopathies in a Series of 1009 Probands With Pathogenic FBN1 Mutations , 2009, Pediatrics.

[27]  A. Ferguson-Smith,et al.  Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes , 2008, Nature Genetics.

[28]  N. Ellis,et al.  Syndrome‐causing mutations of the BLM gene in persons in the Bloom's Syndrome Registry , 2007, Human mutation.

[29]  A. Hoischen,et al.  DNA microarray analysis identifies candidate regions and genes in unexplained mental retardation , 2007, Neurology.

[30]  H. Kestler,et al.  Matrix-comparative genomic hybridization from multicenter formalin-fixed paraffin-embedded colorectal cancer tissue blocks , 2007, BMC Cancer.

[31]  C. Boerkoel,et al.  Schimke Versus Non-Schimke Chronic Kidney Disease: An Anthropometric Approach , 2006, Pediatrics.

[32]  M. Pacek,et al.  Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. , 2006, Molecular cell.

[33]  P. Lichter,et al.  Detection of chromosomal imbalances in retinoblastoma by matrix‐based comparative genomic hybridization , 2005, Genes, chromosomes & cancer.

[34]  J. Lubiński,et al.  CHEK2 is a multiorgan cancer susceptibility gene. , 2004, American journal of human genetics.

[35]  J. Groden,et al.  Bloom's syndrome , 1992, Human Genetics.

[36]  O. el-Maarri SIRPH analysis: SNuPE with IP-RP-HPLC for quantitative measurements of DNA methylation at specific CpG sites. , 2004, Methods in molecular biology.

[37]  E. Thorland,et al.  Microduplication 22q11.2, an emerging syndrome: clinical, cytogenetic, and molecular analysis of thirteen patients. , 2003, American journal of human genetics.

[38]  K. Zerres,et al.  Oligophrenin 1 (OPHN1) gene mutation causes syndromic X-linked mental retardation with epilepsy, rostral ventricular enlargement and cerebellar hypoplasia. , 2003, Brain : a journal of neurology.

[39]  Lajos Szirovicza,et al.  Gender-specific growth patterns for stature, sitting height and limbs length in Croatian children and youth (3 to 18 years of age). , 2003, Collegium antropologicum.

[40]  N. Philip,et al.  Mutations in the oligophrenin-1 gene (OPHN1) cause X linked congenital cerebellar hypoplasia , 2003, Journal of medical genetics.

[41]  P. Robinson,et al.  Mutations of FBN1 and genotype–phenotype correlations in Marfan syndrome and related fibrillinopathies , 2002, Human mutation.

[42]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[43]  K. Isselbacher,et al.  Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. , 1999, Science.

[44]  W. Kuo,et al.  High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays , 1998, Nature Genetics.

[45]  H. R. Crollius,et al.  Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation , 1998, Nature.

[46]  H. Döhner,et al.  Matrix‐based comparative genomic hybridization: Biochips to screen for genomic imbalances , 1997, Genes, chromosomes & cancer.

[47]  J. Weissenbach,et al.  A human homologue of the Drosophila eyes absent gene underlies Branchio-Oto-Renal (BOR) syndrome and identifies a novel gene family , 1997, Nature Genetics.

[48]  J. German Bloom's syndrome. XX. The first 100 cancers. , 1997, Cancer genetics and cytogenetics.

[49]  Ada Hamosh,et al.  Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene , 1991, Nature.

[50]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .