Design sensitivity analysis and optimization for nonlinear buckling of finite-dimensional elastic conservative structures

The purpose of this review paper is to summarize the existing methods of design sensitivity analysis and optimization of elastic conservative finite-dimensional systems with respect to nonlinear buckling behavior. Difficulties related to geometrical nonlinear singular behaviors are discussed in detail. Characteristics of optimized structures are demonstrated in reference to snapthrough behavior, hill-top branching, and degenerate critical points. A new optimization result of a flexible truss that fully utilizes the snapthrough behavior is also presented.

[1]  Tae Soo Kwon,et al.  An approximation technique for design sensitivity analysis of the critical load in non-linear structures , 1999 .

[2]  Makoto Ohsaki,et al.  SEQUENTIAL SEMIDEFINITE PROGRAMMING FOR OPTIMIZATION OF FRAMED STRUCTURES UNDER MULTIMODAL BUCKLING CONSTRAINTS , 2001 .

[3]  J. Thompson,et al.  Elastic Instability Phenomena , 1984 .

[4]  Peter Wriggers,et al.  A general procedure for the direct computation of turning and bifurcation points , 1990 .

[5]  L. Kollár,et al.  Structural Stability in Engineering Practice , 1999 .

[6]  W. T. Koiter THE STABILITY OF ELASTIC EQUILIBRIUM , 1970 .

[7]  Kenjiro Terada,et al.  Imperfection sensitive variation of critical loads at hilltop bifurcation point , 2002 .

[8]  E. Taroco,et al.  Design sensitivity of post-buckling states including material constraints , 2000 .

[9]  K. Bathe Finite Element Procedures , 1995 .

[10]  Bogdan Bochenek OPTIMIZATION OF GEOMETRICALLY NONLINEAR STUCTURES WITH RESPECT TO BOTH BUCKLING AND POSTBUCKLING CONSTRAINTS , 1997 .

[11]  Eduard Riks,et al.  Buckling analysis of elastic structures : A computational approach , 1997 .

[12]  Shahram Pezeshk,et al.  Optimal Design of Frames to Resist Buckling under Multiple Load Cases , 1991 .

[13]  Robert Levy,et al.  Optimization for nonlinear stability , 1988 .

[14]  J. Pietrzak An alternative approach to optimization of structures prone to instability , 1996 .

[15]  Makoto Ohsaki,et al.  DESIGN OF LATERAL BRACES FOR COLUMNS CONSIDERING CRITICAL IMPERFECTION OF BUCKLING , 2004 .

[16]  Makoto Ohsaki,et al.  Optimization of imperfection-sensitive symmetric systems for specified maximum load factor , 1998 .

[17]  Sensitivity analysis of an optimized bar-spring model with hill-top branching , 2003 .

[18]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[19]  Zdenek P. Bazant,et al.  Postcritical Imperfection-Sensitive Buckling and Optimal Bracing of Large Regular Frames , 1997 .

[20]  Raymond H. Plaut,et al.  Optimization of an Asymmetric Two-Bar Truss Against Instability∗ , 1984 .

[21]  J. M. T. Thompson,et al.  A general theory for the equilibrium and stability of discrete conservative systems , 1969 .

[22]  Editors , 1986, Brain Research Bulletin.

[23]  F. van Keulen,et al.  Refined semi-analytical design sensitivities , 2000 .

[24]  Manohar P. Kamat,et al.  OPTIMIZATION OF SPACE TRUSSES AGAINST INSTABILITY USING DESIGN SENSITIVITY DERIVATIVES , 1985 .

[25]  Raphael T. Haftka,et al.  Design sensitivity analysis of non-linear structures in regular and critical states , 1994 .

[26]  J. Roorda On the buckling of symmetric structural systems with first and second order imperfections , 1968 .

[27]  Ekkehard Ramm,et al.  Shape optimization of buckling sensitive structures , 1994 .

[28]  L. Berke,et al.  Optimum structural design with stability constraints , 1976 .

[29]  Makoto Ohsaki,et al.  Optimization of geometrically non-linear symmetric systems with coincident critical points , 2000 .

[30]  H. H. E. Leipholz,et al.  Instabilities and catastrophes in science and engineering , 1981 .

[31]  Donald E. Grierson,et al.  Least‐Weight Design of Steel Frameworks Accounting for P‐Δ Effects , 1989 .

[32]  K. Uetani,et al.  SENSITIVITY ANALYSIS OF BIFURCATION LOAD OF FINITE-DIMENSIONAL SYMMETRIC SYSTEMS , 1996 .

[33]  M. P. Saka,et al.  OPTIMUM DESIGN OF GEOMETRICALLY NONLINEAR SPACE TRUSSES , 1991 .

[34]  李幼升,et al.  Ph , 1989 .

[35]  Edward J. Haug,et al.  Optimization of distributed parameter structures , 1981 .

[36]  R. Haber,et al.  Design sensitivity analysis for rate-independent elastoplasticity , 1993 .

[37]  William Prager,et al.  Problems of Optimal Structural Design , 1968 .

[38]  J. Davenport Editor , 1960 .

[39]  Fumio Fujii,et al.  Modified stiffness iteration to pinpoint multiple bifurcation points , 2001 .

[40]  Giles W Hunt,et al.  Hidden (A)Symmetries of Elastic and Plastic Bifurcation , 1986 .

[41]  Raphael T. Haftka,et al.  Semi-analytical static nonlinear structural sensitivity analysis , 1993 .

[42]  J. Piekarski,et al.  Sensitivity analysis and optimal design of non‐linear structures , 1998 .

[43]  J. M. T. Thompson,et al.  DANGERS OF STRUCTURAL OPTIMIZATION , 1974 .

[44]  H. Noguchi,et al.  Sensitivity analysis in post-buckling problems of shell structures , 1993 .

[45]  Lin Chien-Chang,et al.  Optimal design based on optimality criterion for frame structures including buckling constraint , 1989 .

[46]  Giles W Hunt,et al.  A general theory of elastic stability , 1973 .

[47]  Development of a sensitivity analysis method for nonlinear buckling load , 1995 .

[48]  Jasbir S. Arora,et al.  Structural design sensitivity analysis of nonlinear response , 1985 .

[49]  G. Palassopoulos ON THE OPTIMIZATION OF IMPERFECTION-SENSITIVE STRUCTURES WITH BUCKLING CONSTRAINTS , 1991 .

[50]  Kyung K. Choi,et al.  Design sensitivity analysis of critical load factor for nonlinear structural systems , 1990 .

[51]  M. Kocvara,et al.  On the modelling and solving of the truss design problem with global stability constraints , 2002 .

[52]  Lionel Leotoing,et al.  Nonlinear interaction of geometrical and material properties in sandwich beam instabilities , 2002 .

[53]  A. Kounadis Interaction of the joint and of the lateral bracing stiffnesses for the optimum design of unbraced frames , 1983 .

[54]  Ikeda Kiyohiro,et al.  Critical initial imperfection of structures , 1990 .

[55]  Hirohisa Noguchi,et al.  Homologous topology optimization in large displacement and buckling problems , 2001 .

[56]  N. S. Khot,et al.  Minimum weight design of truss structures with geometric nonlinear behavior , 1985 .

[57]  Sensitivity analysis and optimization corresponding to a degenerate critical point , 2001 .

[58]  M. Ohsaki,et al.  Optimum design with imperfection sensitivity coefficients for limit point loads , 1994 .

[59]  T. E. Bruns,et al.  Numerical methods for the topology optimization of structures that exhibit snap‐through , 2002 .

[60]  J. S. Arora,et al.  Design sensitivity analysis of non-linear buckling load , 1988 .

[61]  M. Ohsaki Maximum loads of imperfect systems corresponding to stable bifurcation , 2002 .

[62]  K. Huseyin,et al.  Nonlinear theory of elastic stability , 1975 .

[63]  Jasbir S. Arora,et al.  Variational method for design sensitivity analysis in nonlinear structural mechanics , 1988 .

[64]  Makoto Ohsaki,et al.  Imperfection sensitivity of hilltop branching points of systems with dihedral group symmetry , 2005 .

[65]  Creto Augusto Vidal,et al.  The consistent tangent operator for design sensitivity analysis of history-dependent response , 1991 .

[66]  N. Olhoff,et al.  Multiple eigenvalues in structural optimization problems , 1994 .