Perceptually Linear Parameter Variations

Most visual analysis tasks require interactive adjustment of parameter values. In general, a linear variation of a parameter, using for instance a GUI slider, changes the visual result in a perceptually non‐linear way. This hampers interactive adjustment of parameters, especially in regions where rapid perceptual changes occur. Selecting a good parameter value therefore remains a time‐consuming and often difficult task. We propose a novel technique to build a non‐linear function that maps a new parameter to the original parameter. By prefixing this function to the original parameter and using the new parameter as input, a linear relationship between input and visual feedback is obtained. To construct the non‐linear function, we measure the variation of the visual result using image metrics. Given a suitable perceptual image metric, perceptually linear image variations are achieved. We demonstrate the practical utility of our approach by implementing two common image metrics, a perceptual and a non‐perceptual one, and by applying the method to a few visual analysis tasks.

[1]  Cedric Nishan Canagarajah,et al.  Structural Similarity-Based Object Tracking in Video Sequences , 2006, 2006 9th International Conference on Information Fusion.

[2]  John D. Austin,et al.  Adaptive histogram equalization and its variations , 1987 .

[3]  Weisi Lin,et al.  Perceptual visual quality metrics: A survey , 2011, J. Vis. Commun. Image Represent..

[4]  Torsten Möller,et al.  Transfer Functions on a Logarithmic Scale for Volume Rendering , 2004, Graphics Interface.

[5]  Toshiyuki Masui,et al.  Elastic graphical interfaces to precise data manipulation , 1995, CHI 95 Conference Companion.

[6]  Zhou Wang,et al.  Multiscale structural similarity for image quality assessment , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[7]  Pierre Dragicevic,et al.  Color Lens: Adaptive Color Scale Optimization for Visual Exploration , 2011, IEEE Transactions on Visualization and Computer Graphics.

[8]  Ajay Divakaran,et al.  Adaptive fast playback-based video skimming using a compressed-domain visual complexity measure , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[9]  Takeo Igarashi,et al.  Speed-dependent automatic zooming for browsing large documents , 2000, UIST '00.

[10]  Yuichi Koike,et al.  TimeSlider: an interface to specify time point , 1997, UIST '97.

[11]  Marc Wolter Navigation in time-varying scientific data , 2010 .

[12]  Ravin Balakrishnan,et al.  Zliding: fluid zooming and sliding for high precision parameter manipulation , 2005, UIST.

[13]  Andy Cockburn,et al.  Comparing speed-dependent automatic zooming with traditional scroll, pan and zoom methods , 2004 .

[14]  Ben Shneiderman,et al.  The alphaslider: a compact and rapid selector , 1994, CHI Conference Companion.

[15]  Giuseppe Santucci,et al.  See What You Know: Analyzing Data Distribution to Improve Density Map Visualization , 2007, EuroVis.

[16]  Melanie Tory,et al.  Human factors in visualization research , 2004, IEEE Transactions on Visualization and Computer Graphics.

[17]  Benjamin B. Bederson,et al.  A review of overview+detail, zooming, and focus+context interfaces , 2009, CSUR.

[18]  Zhou Wang,et al.  Multi-scale structural similarity for image quality assessment , 2003 .

[19]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[20]  R. Hunter Photoelectric Color Difference Meter , 1958 .

[21]  Ben Shneiderman,et al.  Alpha Slider: Searching Textual Lists with Sliders , 1993 .

[22]  T. Smith,et al.  The C.I.E. colorimetric standards and their use , 1931 .

[23]  James R. Miller,et al.  Conference Companion on Human Factors in Computing Systems , 1995, CHI 1995.

[24]  Penny Rheingans,et al.  Discovering High-level Parameters for Visualization Design , 2005, EuroVis.

[25]  Steffen Prohaska,et al.  Image-Error-Based Level of Detail for Landscape Visualization , 2010, VMV.

[26]  Gunther Heidemann,et al.  Information-based adaptive fast-forward for visual surveillance , 2011, Multimedia Tools and Applications.

[27]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[28]  Ben Shneiderman,et al.  The alphaslider: a compact and rapid selector , 1994, CHI Conference Companion.

[29]  Joshua Savage Speed-dependent Automatic Zooming , 2002 .

[30]  Jean-Daniel Fekete,et al.  OrthoZoom scroller: 1D multi-scale navigation , 2006, CHI.

[31]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[32]  Stephen G. Eick,et al.  Data visualization sliders , 1994, UIST '94.