Modeling Non-Monotone Risk Aversion Using SAHARA Utility Functions

We develop a new class of utility functions, SAHARA utility, with the distinguishing feature that it allows absolute risk aversion to be non-monotone and implements the assumption that agents may become less risk averse for very low values of wealth. The class contains the well-known exponential and power utility functions as limiting cases. We investigate the optimal investment problem under SAHARA utility and derive the optimal strategies in an explicit form using dual optimization methods. We also show how SAHARA utility functions extend the class of contingent claims that can be valued using indifference pricing in incomplete markets.

[1]  Marek Musiela,et al.  An example of indifference prices under exponential preferences , 2004, Finance Stochastics.

[2]  R. Carmona Indifference Pricing: Theory and Applications , 2008 .

[3]  Daniel McFadden,et al.  Essays on economic behavior under uncertainty , 1976 .

[4]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[5]  J. Cox,et al.  Optimal consumption and portfolio policies when asset prices follow a diffusion process , 1989 .

[6]  Michael D. Intriligator,et al.  Frontiers of Quantitative Economics. , 1972 .

[7]  D. Hobson Option Pricing In Incomplete Markets , 2007 .

[8]  S. Shreve,et al.  Martingale and duality methods for utility maximization in a incomplete market , 1991 .

[9]  Neil D. Pearson,et al.  Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case , 1991 .

[10]  Carsten Sørensen,et al.  Dynamic Asset Allocation and Fixed Income Management , 1999, Journal of Financial and Quantitative Analysis.

[11]  Hong Liu,et al.  Lifetime Consumption and Investment: Retirement and Constrained Borrowing , 2009, J. Econ. Theory.

[12]  D. Kramkov,et al.  Sensitivity analysis of utility-based prices and risk-tolerance wealth processes , 2006, math/0702413.

[13]  Yihong Xia,et al.  Stochastic Interest Rates and the Bond-Stock Mix , 2000 .

[14]  W. Schachermayer Optimal investment in incomplete financial markets , 2002 .

[15]  Claus Munk,et al.  Optimal Consumption and Investment Strategies with Stochastic Interest Rates , 2001 .

[16]  A. R. Norman,et al.  Portfolio Selection with Transaction Costs , 1990, Math. Oper. Res..

[17]  Vicky Hendersony,et al.  Valuation of Claims on Non-Traded assets using Utility Maximisation , 2001 .

[18]  Neil D. Pearson,et al.  Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case , 1991 .

[19]  R. C. Merton,et al.  Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .

[20]  Marek Musiela,et al.  A valuation algorithm for indifference prices in incomplete markets , 2004, Finance Stochastics.

[21]  Stanley R. Pliska,et al.  A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios , 1986, Math. Oper. Res..

[22]  Gregory A. Willard,et al.  Local martingales, arbitrage, and viability Free snacks and cheap thrills , 2000 .

[23]  V. Henderson,et al.  VALUATION OF CLAIMS ON NONTRADED ASSETS USING UTILITY MAXIMIZATION , 2002 .

[24]  S. R. Pliska,et al.  Mathematical Finance, Bachelier Congres 2000 , 2002 .

[25]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[26]  S. Shreve,et al.  Optimal portfolio and consumption decisions for a “small investor” on a finite horizon , 1987 .

[27]  R. C. Merton,et al.  Optimum Consumption and Portfolio Rules in a Continuous-Time Model* , 1975 .

[28]  Miles S. Kimball Precautionary Saving in the Small and in the Large , 1989 .

[29]  Alex W. H. Chan Merton, Robert C. , 2010 .

[30]  S. Pliska,et al.  Mathematics of Derivative Securities , 1998 .