Radical C−N Borylation of Aromatic Amines Enabled by a Pyrylium Reagent

Abstract Herein, we report a radical borylation of aromatic amines through a homolytic C(sp2)−N bond cleavage. This method capitalizes on a simple and mild activation via a pyrylium reagent (ScPyry‐OTf) thus priming the amino group for reactivity. The combination of terpyridine and a diboron reagent triggers a radical reaction which cleaves the C(sp2)−N bond and forges a new C(sp2)−B bond. The unique non‐planar structure of the pyridinium intermediate, provides the necessary driving force for the aryl radical formation. The method permits borylation of a wide variety of aromatic amines indistinctively of the electronic environment.

[1]  E. Carreira,et al.  Pyridinium Salts as Redox-Active Functional Group Transfer Reagents. , 2020, Angewandte Chemie.

[2]  A. Studer,et al.  Base-Promoted C–C Bond Activation Enables Radical Allylation with Homoallylic Alcohols , 2020, Journal of the American Chemical Society.

[3]  Graham C. Haug,et al.  Visible Light-Induced Borylation of C-O, C-N, and C-X Bonds. , 2020, Journal of the American Chemical Society.

[4]  Josep Cornella,et al.  Selective Late‐Stage Sulfonyl Chloride Formation from Sulfonamides Enabled by Pyry‐BF4 , 2019, Angewandte Chemie.

[5]  Y. Pang,et al.  Pyrylium Salts: Selective Reagents for the Activation of Primary Amino Groups in Organic Synthesis , 2019, Synthesis.

[6]  Shang-Zheng Sun,et al.  Site-selective catalytic deaminative alkylation of unactivated olefins. , 2019, Journal of the American Chemical Society.

[7]  A. Studer,et al.  New avenues for C–B bond formation via radical intermediates , 2019, Chemical science.

[8]  C. Basch,et al.  Deaminative Arylation of Amino Acid-derived Pyridinium Salts. , 2019, Organic letters.

[9]  Jie Wu,et al.  Recent Advances in Pyridinium Salts as Radical Reservoirs in Organic Synthesis , 2019, ACS Catalysis.

[10]  W. Xiao,et al.  Cobalt(II)-Catalyzed Alkoxycarbonylation of Aliphatic Amines via C-N Bond Activation. , 2019, Organic letters.

[11]  Xue-Yuan Liu,et al.  Reductive Coupling between C-N and C-O Electrophiles. , 2019, Journal of the American Chemical Society.

[12]  Felix J R Klauck,et al.  Visible-Light-Mediated Charge Transfer Enables C-C Bond Formation with Traceless Acceptor Groups. , 2019, Chemistry.

[13]  D. Kong,et al.  Radical coupling from alkyl amines , 2019, Nature Catalysis.

[14]  Yi Pan,et al.  Ni-catalyzed deaminative cross-electrophile coupling of Katritzky salts with halides via C─N bond activation , 2019, Science Advances.

[15]  Li Zhang,et al.  Visible-Light-Induced Organocatalytic Borylation of Aryl Chlorides. , 2019, Journal of the American Chemical Society.

[16]  P. Melchiorre,et al.  Photochemical Organocatalytic Borylation of Alkyl Chlorides, Bromides, and Sulfonates , 2019, ACS Catalysis.

[17]  J. Montgomery,et al.  Catalytic reduction of aryl trialkylammonium salts to aryl silanes and arenes† †Electronic supplementary information (ESI) available: Experimental details and copies of NMR spectra. See DOI: 10.1039/c9sc01083a , 2019, Chemical science.

[18]  G. Molander,et al.  Deaminative Reductive Arylation Enabled by Nickel/Photoredox Dual Catalysis. , 2019, Organic letters.

[19]  Ning‐Xin Xu,et al.  Photoinduced C(sp3 )-N Bond Cleavage Leading to the Stereoselective Syntheses of Alkenes. , 2019, Chemistry.

[20]  V. R. Yatham,et al.  Ni-catalyzed Reductive Deaminative Arylation at sp3 Carbon Centers. , 2019, Organic letters.

[21]  Bin Zhao,et al.  Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide , 2019, Science.

[22]  J. Liao,et al.  Deaminative Reductive Cross-Electrophile Couplings of Alkylpyridinium Salts and Aryl Bromides. , 2019, Organic letters.

[23]  L. Cavallo,et al.  Nickel-catalyzed C–N bond activation: activated primary amines as alkylating reagents in reductive cross-coupling , 2019, Chemical science.

[24]  V. Aggarwal,et al.  Catalyst‐Free Deaminative Functionalizations of Primary Amines by Photoinduced Single‐Electron Transfer , 2019, Angewandte Chemie.

[25]  W. Xiao,et al.  Deaminative (Carbonylative) Alkyl-Heck-type Reactions Enabled by Photocatalytic C-N Bond Activation. , 2019, Angewandte Chemie.

[26]  F. Liu,et al.  Radical alkylation of isocyanides with amino acid-/peptide-derived Katritzky salts via photoredox catalysis. , 2019, Organic & biomolecular chemistry.

[27]  Xin Hong,et al.  Nickel-Catalyzed Kumada Coupling of Boc-Activated Aromatic Amines via Nondirected Selective Aryl C-N Bond Cleavage. , 2019, Organic letters.

[28]  S. Plunkett,et al.  Harnessing Alkylpyridinium Salts as Electrophiles in Deaminative Alkyl-Alkyl Cross-Couplings. , 2019, Journal of the American Chemical Society.

[29]  Felix J R Klauck,et al.  Visible-Light-Mediated Deaminative Three-Component Dicarbofunctionalization of Styrenes with Benzylic Radicals , 2018, ACS Catalysis.

[30]  Miao‐Miao Zhang,et al.  Visible-light-mediated allylation of alkyl radicals with allylic sulfones via a deaminative strategy , 2018 .

[31]  A. Studer,et al.  Metal‐Free Radical Borylation of Alkyl and Aryl Iodides , 2018, Angewandte Chemie.

[32]  Shuhua Li,et al.  Selective C-N Borylation of Alkyl Amines Promoted by Lewis Base. , 2018, Angewandte Chemie.

[33]  Felix J R Klauck,et al.  Deaminative Borylation of Aliphatic Amines Enabled by Visible Light Excitation of an Electron Donor-Acceptor Complex. , 2018, Chemistry.

[34]  Shuhua Li,et al.  Selective C−N Borylation of Alkyl Amines Promoted by Lewis Base , 2018, Angewandte Chemie.

[35]  D. Gryko,et al.  Redox-Activated Amines in C(sp3)–C(sp) and C(sp3)–C(sp2) Bond Formation Enabled by Metal-Free Photoredox Catalysis , 2018, ACS Catalysis.

[36]  Zhangjie Shi,et al.  Ni-Catalyzed Cross-Coupling of Dimethyl Aryl Amines with Arylboronic Esters under Reductive Conditions. , 2018, Journal of the American Chemical Society.

[37]  Dandan Han,et al.  Formal group insertion into aryl C‒N bonds through an aromaticity destruction-reconstruction process , 2018, Nature Communications.

[38]  Lin He,et al.  Photoinduced Deaminative Borylation of Alkylamines. , 2018, Journal of the American Chemical Society.

[39]  Feng Wang,et al.  Selective Functionalization of Aminoheterocycles by a Pyrylium Salt. , 2018, Angewandte Chemie.

[40]  Feng Wang,et al.  Selective Functionalization of Aminoheterocycles by a Pyrylium Salt , 2018, Angewandte Chemie.

[41]  J. Liao,et al.  Vinylation of Benzylic Amines via C–N Bond Functionalization of Benzylic Pyridinium Salts , 2018, Synthesis.

[42]  J. Liao,et al.  Transforming Benzylic Amines into Diarylmethanes: Cross-Couplings of Benzylic Pyridinium Salts via C-N Bond Activation. , 2018, Organic letters.

[43]  M. Uchiyama,et al.  From Anilines to Aryl Ethers: A Facile, Efficient, and Versatile Synthetic Method Employing Mild Conditions. , 2018, Angewandte Chemie.

[44]  Xiang Wu,et al.  Recent Advances in C–B Bond Formation through a Free Radical Pathway , 2018 .

[45]  Zhangjie Shi,et al.  Direct Borylation of Tertiary Anilines via C-N Bond Activation. , 2018, Organic letters.

[46]  Li Zhang,et al.  Super electron donors derived from diboron , 2018, Chemical science.

[47]  J. Wang,et al.  Renaissance of Sandmeyer-Type Reactions: Conversion of Aromatic C-N Bonds into C-X Bonds (X = B, Sn, P, or CF3). , 2018, Accounts of chemical research.

[48]  Yameng Wan,et al.  Selective Cleavage of Inert Aryl C-N Bonds in N-Aryl Amides. , 2018, The Journal of organic chemistry.

[49]  Hui Chen,et al.  Low-Valent, High-Spin Chromium-Catalyzed Cleavage of Aromatic Carbon-Nitrogen Bonds at Room Temperature: A Combined Experimental and Theoretical Study. , 2017, Journal of the American Chemical Society.

[50]  Felix J R Klauck,et al.  Deaminative Strategy for the Visible-Light-Mediated Generation of Alkyl Radicals. , 2017, Angewandte Chemie.

[51]  F. Glorius,et al.  Durch sichtbares Licht vermittelte Deaminierung zur Erzeugung von Alkylradikalen , 2017 .

[52]  Bin Zhao,et al.  Isonicotinate Ester Catalyzed Decarboxylative Borylation of (Hetero)Aryl and Alkenyl Carboxylic Acids through N-Hydroxyphthalimide Esters. , 2017, Organic letters.

[53]  Chao‐Jun Li,et al.  Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature. , 2017, Journal of the American Chemical Society.

[54]  F. Glorius,et al.  Transition-Metal-Free, Visible-Light-Enabled Decarboxylative Borylation of Aryl N-Hydroxyphthalimide Esters. , 2017, Journal of the American Chemical Society.

[55]  J. Liao,et al.  Harnessing Alkyl Amines as Electrophiles for Nickel-Catalyzed Cross Couplings via C-N Bond Activation. , 2017, Journal of the American Chemical Society.

[56]  Li Zhang,et al.  Pyridine-Catalyzed Radical Borylation of Aryl Halides. , 2017, Journal of the American Chemical Society.

[57]  F. Glorius,et al.  Durch sichtbares Licht vermittelte Funktionalisierungen von Benzotriazolen, inspiriert durch mechanismusbasiertes Lumineszenz‐ Screening , 2017 .

[58]  Frank Glorius,et al.  Diverse Visible-Light-Promoted Functionalizations of Benzotriazoles Inspired by Mechanism-Based Luminescence Screening. , 2017, Angewandte Chemie.

[59]  Min Jiang,et al.  Visible-Light Photoredox Borylation of Aryl Halides and Subsequent Aerobic Oxidative Hydroxylation. , 2016, Organic letters.

[60]  K. Miyamoto,et al.  Stille coupling via C–N bond cleavage , 2016, Nature Communications.

[61]  V. Nesterov,et al.  Additive- and Metal-Free, Predictably 1,2- and 1,3-Regioselective, Photoinduced Dual C-H/C-X Borylation of Haloarenes. , 2016, Journal of the American Chemical Society.

[62]  H. Arman,et al.  Scalable, Metal- and Additive-Free, Photoinduced Borylation of Haloarenes and Quaternary Arylammonium Salts. , 2016, Journal of the American Chemical Society.

[63]  Yijin Su,et al.  Transition-metal catalysed C-N bond activation. , 2016, Chemical Society reviews.

[64]  N. Chatani,et al.  Phenyltrimethylammonium Salts as Methylation Reagents in the Nickel-Catalyzed Methylation of C-H Bonds. , 2016, Angewandte Chemie.

[65]  Pengfei Li,et al.  Efficient metal-free photochemical borylation of aryl halides under batch and continuous-flow conditions , 2016, Chemical science.

[66]  R. Fan,et al.  Destruction and Construction: Application of Dearomatization Strategy in Aromatic Carbon-Nitrogen Bond Functionalization. , 2015, Angewandte Chemie.

[67]  Z. Xi,et al.  Transition-Metal-Catalyzed Cleavage of C-N Single Bonds. , 2015, Chemical reviews.

[68]  Fengxiang Zhu,et al.  Palladium-Catalyzed C-H Arylation of (Benzo)oxazoles or (Benzo)thiazoles with Aryltrimethylammonium Triflates. , 2015, Organic letters.

[69]  M. Burke,et al.  From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks. , 2015, Accounts of chemical research.

[70]  W. Erb,et al.  Sequential one-pot access to molecular diversity through aniline aqueous borylation. , 2014, The Journal of organic chemistry.

[71]  Jie Wu,et al.  Removal of amino groups from anilines through diazonium salt-based reactions. , 2014, Organic & biomolecular chemistry.

[72]  N. Chatani,et al.  Nickel-catalyzed reductive and borylative cleavage of aromatic carbon-nitrogen bonds in N-aryl amides and carbamates. , 2014, Journal of the American Chemical Society.

[73]  S. Blum,et al.  Alkoxyboration: Ring-Closing Addition of B–O σ Bonds across Alkynes , 2014, Journal of the American Chemical Society.

[74]  A. Yudin,et al.  Air- and moisture-stable amphoteric molecules: enabling reagents in synthesis. , 2014, Accounts of chemical research.

[75]  Junliang Zhang,et al.  Cesium Carbonate Mediated Borylation of Aryl Iodides with Diboron in Methanol , 2013 .

[76]  J. Wang,et al.  Synthesis of pinacol arylboronates from aromatic amines: a metal-free transformation. , 2013, The Journal of organic chemistry.

[77]  Guangbin Dong,et al.  Recent applications of arene diazonium salts in organic synthesis. , 2013, Organic & biomolecular chemistry.

[78]  Jian Yu,et al.  Metal‐Free, Visible Light‐Induced Borylation of Aryldiazonium Salts: A Simple and Green Synthetic Route to Arylboronates , 2012 .

[79]  Chuan Zhu,et al.  Transition-metal-free borylation of aryltriazene mediated by BF3·OEt2. , 2012, Organic letters.

[80]  Lan-Gui Xie,et al.  Nickel-catalyzed cross-coupling of aryltrimethylammonium iodides with organozinc reagents. , 2011, Angewandte Chemie.

[81]  Jinhua J. Song,et al.  Room temperature palladium-catalyzed cross coupling of aryltrimethylammonium triflates with aryl Grignard reagents. , 2010, Organic letters.

[82]  J. Wang,et al.  Direct conversion of arylamines to pinacol boronates: a metal-free borylation process. , 2010, Angewandte Chemie.

[83]  F. Kakiuchi,et al.  Cleavage of C-N bonds in aniline derivatives on a ruthenium center and its relevance to catalytic C-C bond formation. , 2009, Journal of the American Chemical Society.

[84]  N. Chatani,et al.  Ruthenium-catalyzed carbon-carbon bond formation via the cleavage of an unreactive aryl carbon-nitrogen bond in aniline derivatives with organoboronates. , 2007, Journal of the American Chemical Society.

[85]  M. Moreno-Mañas,et al.  Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions. , 2006, Chemical Reviews.

[86]  D. MacMillan,et al.  The first Suzuki cross-couplings of aryltrimethylammonium salts. , 2003, Journal of the American Chemical Society.

[87]  A. Katritzky,et al.  Kinetics and mechanisms of nucleophilic displacements with heterocycles as leaving groups. Part 25. X-Ray structure determinations, crystallographic evidence for steric crowding, and correlation with acceleration of rates , 1988 .

[88]  A. Katritzky,et al.  Nucleophilic displacements of N‐aryl and heteroaryl groups. Part 8 . Intermolecular reactions of N‐aryl‐pyridinium, ‐quinolinium, and ‐acridinium salts with nucleophiles , 1986 .

[89]  A. R. Katritzky,et al.  Pyryliumsalze als Zwischenstufen bei der Umwandlung von NH2-Gruppen in andere funktionelle Gruppen , 1984 .

[90]  A. Katritzky,et al.  Pyrylium Mediated Transformations of Primary Amino Groups into Other Functional Groups. New Synthetic Methods (41) , 1984 .

[91]  A. Katritzky,et al.  KINETICS AND MECHANISMS OF NUCLEOPHILIC DISPLACEMENTS WITH HETEROCYCLES AS LEAVING GROUPS. 2. N-BENZYLPYRIDINIUM CATIONS: RATE VARIATION WITH STERIC EFFECTS IN THE LEAVING GROUP , 1981 .

[92]  A. Katritzky,et al.  The synthesis and reactions of sterically constrained pyrylium and pyridinium salts , 1980 .

[93]  A. Katritzky,et al.  Heterocycles in organic synthesis. Part 36. An alternative to the gattermann reaction for the conversion of anilines into thiocyanates , 1980 .

[94]  A. Katritzky,et al.  Heterocycles in organic synthesis. Part 16. The conversion of aliphatic, aromatic, and heteroaromatic primary amines into iodides , 1979 .

[95]  Kerstin M. Mueller,et al.  Amines: Synthesis, Properties and Applications , 2004 .

[96]  Yu-ran Luo,et al.  Comprehensive handbook of chemical bond energies , 2007 .

[97]  E. Wenkert,et al.  Nickel-induced conversion of carbon–nitrogen into carbon–carbon bonds. One-step transformations of aryl, quaternary ammonium salts into alkylarenes and biaryls , 1988 .