Complexity of the resolution of parametric systems of polynomial equations and inequations

Consider a parametric system of <i>n</i> polynomial equations and <i>r</i> polynomial inequations in <i>n</i> unknowns and <i>s</i> parameters, with rational coefficients. A recurrent problem is to determine some open set in the parameter space where the considered parametric system admits a constant number of real solutions. Following the works of Lazard and Rouillier, this can be done by the computation of a <i>discriminant variety</i>. Let <i>d</i> bound the degree of the input's polynomials, and σ bound the bit-size of their coefficients. Based on some usual assumptions for the applications we prove that the degree of the computed minimal discriminant variety is bounded by <i>D := (n+r)d<sup>(n+1)</sup></i>. Moreover we provide in this case a deterministic method which computes the minimal discriminant variety in σ<sup><i>O</i>(1)</sup><i>D<sup>O(n+s)</sup></i> bit-operations on a deterministic Turing machine.

[1]  Teresa Krick,et al.  A computational method for diophantine approximation , 1996 .

[2]  bitnetJoos Heintz,et al.  La D Etermination Des Points Isol Es Et De La Dimension D'une Vari Et E Alg Ebrique Peut Se Faire En Temps Polynomial , 1991 .

[3]  Juan Sabia,et al.  An effective algorithm for quantifier elimination over algebraically closed fields using straight line programs , 1998 .

[4]  Martin Raab,et al.  Computing the Dimension of a Polynomial Ideal , 2007 .

[5]  佐藤 洋祐,et al.  特集 Comprehensive Grobner Bases , 2007 .

[6]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[7]  Dima Grigoriev,et al.  Bounds on numers of vectors of multiplicities for polynomials which are easy to compute , 2000, ISSAC.

[8]  Jan Verschelde,et al.  Numerical algebraic geometry and symbolic computation , 2004, ISSAC '04.

[9]  José Maria Turull Torres,et al.  The space complexity of elimination theory: upper bounds , 1997 .

[10]  D. Lazard Algèbre linéaire sur $K[X_1,\dots,X_n]$ et élimination , 1977 .

[11]  Saugata Basu,et al.  New results on quantifier elimination over real closed fields and applications to constraint databases , 1999, JACM.

[12]  Palaiseau Cedex,et al.  Computing Parametric Geometric Resolutions , 2001 .

[13]  Marc Giusti,et al.  Some Effectivity Problems in Polynomial Ideal Theory , 1984, EUROSAM.

[14]  Christopher W. Brown,et al.  On using bi-equational constraints in CAD construction , 2005, ISSAC.

[15]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[16]  Zhenbing Zeng,et al.  An open problem on metric invariants of tetrahedra , 2005, ISSAC '05.

[17]  Antoine Joux,et al.  Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases , 2003, CRYPTO.

[18]  Volker Weispfenning,et al.  Comprehensive Gröbner Bases , 1992, J. Symb. Comput..

[19]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[20]  Fran e Abstra Solving Some Overdetermined Polynomial Systems , 1999 .

[21]  W. Brownawell A pure power product version of the Hilbert Nullstellensatz. , 1998 .

[22]  J. L. Rabinowitsch Zum Hilbertschen Nullstellensatz , 1930 .

[23]  Jan Verschelde,et al.  Regeneration, local dimension, and applications in numerical algebraic geometry , 2009 .

[24]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[25]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[26]  Bruno Buchberger,et al.  A theoretical basis for the reduction of polynomials to canonical forms , 1976, SIGS.

[27]  M. Morari,et al.  Parametric optimization and optimal control using algebraic geometry methods , 2006 .

[28]  Solen Corvez,et al.  Using Computer Algebra Tools to Classify Serial Manipulators , 2002, Automated Deduction in Geometry.

[29]  Hirokazu Anai,et al.  Sum of roots with positive real parts , 2005, ISSAC '05.

[30]  Dongming Wang,et al.  Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.