暂无分享,去创建一个
[1] Teresa Krick,et al. A computational method for diophantine approximation , 1996 .
[2] bitnetJoos Heintz,et al. La D Etermination Des Points Isol Es Et De La Dimension D'une Vari Et E Alg Ebrique Peut Se Faire En Temps Polynomial , 1991 .
[3] Juan Sabia,et al. An effective algorithm for quantifier elimination over algebraically closed fields using straight line programs , 1998 .
[4] Martin Raab,et al. Computing the Dimension of a Polynomial Ideal , 2007 .
[5] 佐藤 洋祐,et al. 特集 Comprehensive Grobner Bases , 2007 .
[6] Jean Charles Faugère,et al. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.
[7] Dima Grigoriev,et al. Bounds on numers of vectors of multiplicities for polynomials which are easy to compute , 2000, ISSAC.
[8] Jan Verschelde,et al. Numerical algebraic geometry and symbolic computation , 2004, ISSAC '04.
[9] José Maria Turull Torres,et al. The space complexity of elimination theory: upper bounds , 1997 .
[10] D. Lazard. Algèbre linéaire sur $K[X_1,\dots,X_n]$ et élimination , 1977 .
[11] Saugata Basu,et al. New results on quantifier elimination over real closed fields and applications to constraint databases , 1999, JACM.
[12] Palaiseau Cedex,et al. Computing Parametric Geometric Resolutions , 2001 .
[13] Marc Giusti,et al. Some Effectivity Problems in Polynomial Ideal Theory , 1984, EUROSAM.
[14] Christopher W. Brown,et al. On using bi-equational constraints in CAD construction , 2005, ISSAC.
[15] Marie-Françoise Roy,et al. On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .
[16] Zhenbing Zeng,et al. An open problem on metric invariants of tetrahedra , 2005, ISSAC '05.
[17] Antoine Joux,et al. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases , 2003, CRYPTO.
[18] Volker Weispfenning,et al. Comprehensive Gröbner Bases , 1992, J. Symb. Comput..
[19] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[20] Fran e Abstra. Solving Some Overdetermined Polynomial Systems , 1999 .
[21] W. Brownawell. A pure power product version of the Hilbert Nullstellensatz. , 1998 .
[22] J. L. Rabinowitsch. Zum Hilbertschen Nullstellensatz , 1930 .
[23] Jan Verschelde,et al. Regeneration, local dimension, and applications in numerical algebraic geometry , 2009 .
[24] Johan P. Hansen,et al. INTERSECTION THEORY , 2011 .
[25] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .
[26] Bruno Buchberger,et al. A theoretical basis for the reduction of polynomials to canonical forms , 1976, SIGS.
[27] M. Morari,et al. Parametric optimization and optimal control using algebraic geometry methods , 2006 .
[28] Solen Corvez,et al. Using Computer Algebra Tools to Classify Serial Manipulators , 2002, Automated Deduction in Geometry.
[29] Hirokazu Anai,et al. Sum of roots with positive real parts , 2005, ISSAC '05.
[30] Dongming Wang,et al. Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.