An order-reversing duality map for conjugacy classes in Lusztig's canonical quotient
暂无分享,去创建一个
[1] P. Achar,et al. Local systems on nilpotent orbits and weighted Dynkin diagrams , 2002, math/0201248.
[2] V. Ostrik,et al. Calculating Canonical Distinguished Involutions in the Affine Weyl Groups , 2001, Exp. Math..
[3] E. Sommers. Lusztig's canonical quotient and generalized duality , 2001, math/0104162.
[4] R. Bezrukavnikov. Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone , 2001, math/0102039.
[5] V. Ostrik,et al. On tensor categories attached to cells in affine Weyl groups, III , 2000, math/0010089.
[6] V. Ostrik. On the equivariant -theory of the nilpotent cone , 1999, math/9911068.
[7] M. Geck. Character Sheaves and Generalized Gelfand–Graev Characters , 1999 .
[8] George Lusztic. A unipotent support for irreducible representations , 1992 .
[9] G. Lusztig. Intersection cohomology complexes on a reductive group , 1984 .
[10] A. Aubert. Character sheaves and generalized Springer correspondence , 2003, Nagoya Mathematical Journal.
[11] N. Xi. The based ring of two-sided cells of affine Weyl groups of type ̃_{-1} , 2002 .
[12] Pramod N. Achar,et al. Equivariant coherent sheaves on the nilpotent cone for complex reductive Lie groups , 2001 .
[13] E. Sommers. A generalization of the Bala-Carter theorem for nilpotent orbits , 1998 .
[14] G. Lusztig. Notes on unipotent classes , 1997 .
[15] Roger W. Carter,et al. Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .
[16] D. Barbasch,et al. Unipotent representations of complex semisimple groups , 1985 .
[17] G. Lusztig. Cells in Affine Weyl Groups , 1985 .
[18] N. Spaltenstein. Classes unipotentes et sous-groupes de Borel , 1982 .
[19] G. Lusztig. A class of irreducible representations of a Weyl group , 1979 .