An order-reversing duality map for conjugacy classes in Lusztig's canonical quotient

[1]  P. Achar,et al.  Local systems on nilpotent orbits and weighted Dynkin diagrams , 2002, math/0201248.

[2]  V. Ostrik,et al.  Calculating Canonical Distinguished Involutions in the Affine Weyl Groups , 2001, Exp. Math..

[3]  E. Sommers Lusztig's canonical quotient and generalized duality , 2001, math/0104162.

[4]  R. Bezrukavnikov Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone , 2001, math/0102039.

[5]  V. Ostrik,et al.  On tensor categories attached to cells in affine Weyl groups, III , 2000, math/0010089.

[6]  V. Ostrik On the equivariant -theory of the nilpotent cone , 1999, math/9911068.

[7]  M. Geck Character Sheaves and Generalized Gelfand–Graev Characters , 1999 .

[8]  George Lusztic A unipotent support for irreducible representations , 1992 .

[9]  G. Lusztig Intersection cohomology complexes on a reductive group , 1984 .

[10]  A. Aubert Character sheaves and generalized Springer correspondence , 2003, Nagoya Mathematical Journal.

[11]  N. Xi The based ring of two-sided cells of affine Weyl groups of type ̃_{-1} , 2002 .

[12]  Pramod N. Achar,et al.  Equivariant coherent sheaves on the nilpotent cone for complex reductive Lie groups , 2001 .

[13]  E. Sommers A generalization of the Bala-Carter theorem for nilpotent orbits , 1998 .

[14]  G. Lusztig Notes on unipotent classes , 1997 .

[15]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[16]  D. Barbasch,et al.  Unipotent representations of complex semisimple groups , 1985 .

[17]  G. Lusztig Cells in Affine Weyl Groups , 1985 .

[18]  N. Spaltenstein Classes unipotentes et sous-groupes de Borel , 1982 .

[19]  G. Lusztig A class of irreducible representations of a Weyl group , 1979 .