Detecting Gaussian entanglement via extractable work

We show how the presence of entanglement in a bipartite Gaussian state can be detected by the amount of work extracted by a continuos variable Szilard-like device, where the bipartite state serves as the working medium of the engine. We provide an expression for the work extracted in such a process and specialize it to the case of Gaussian states. The extractable work provides a sufficient condition to witness entanglement in generic two-mode states, becoming also necessary for squeezed thermal states. We extend the protocol to tripartite Gaussian states, and show that the full structure of inseparability classes cannot be discriminated based on the extractable work. This suggests that bipartite entanglement is the fundamental resource underpinning work extraction.

[1]  M. Scully,et al.  Frontiers of nonequilibrium statistical physics , 1986 .

[2]  72 , 2018, The Devil's Fork.