Dimensionality Invariant Similarity Measure

This paper presents a new similarity measure to be used for general tasks including supervised learnin g, which is represented by the K-nearest neighbor clas sifier (KNN). The proposed similarity measure is in variant to large differences in some dimensions in the feature space. The proposed metric is proved mathematicall y to be a metric. To test its viability for different applica tions, the KNN used the proposed metric for classif ying test examples chosen from a number of real datasets. Compared to some other well known metrics, the experimental results show that the proposed metric is a promisin g distance measure for the KNN classifier with stro ng potential for a wide range of applications. (Hassanat B. A. Dimensionality Invariant Similarity Measure. J Am Sci 2014;10(8):221-226). (ISSN: 1545- 1003). http://www.jofamericanscience.org . 31

[1]  Sung-Hyuk Cha Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions , 2007 .

[3]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[4]  Robert Tibshirani,et al.  Discriminant Adaptive Nearest Neighbor Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jingrui He,et al.  Manifold-ranking based image retrieval , 2004, MULTIMEDIA '04.

[6]  Gustavo E. A. P. A. Batista,et al.  An Empirical Comparison of Dissimilarity Measures for Time Series Classification , 2013, 2013 Brazilian Conference on Intelligent Systems.

[7]  N. Schork,et al.  Generalized genomic distance-based regression methodology for multilocus association analysis. , 2006, American journal of human genetics.

[8]  Maria Chatzigiorgaki,et al.  Compressed domain image retrieval: a comparative study of similarity metrics , 2003, Visual Communications and Image Processing.

[9]  Yvan Saeys,et al.  Comparing Distance Measures with Visual Methods , 2008, MICAI.

[10]  Manesh Kokare,et al.  Performance Evaluation of Distance Metrics: Application to Fingerprint Recognition , 2011, Int. J. Pattern Recognit. Artif. Intell..

[11]  Victoria S. Uren,et al.  Comparing Dissimilarity Measures for Content-Based Image Retrieval , 2008, AIRS.

[12]  Mason S. Macklem,et al.  Multidimensional Modelling of Image Fidelity Measures , 2003 .

[13]  Terry Hedges,et al.  An empirical modification to linear wave theory , 1977 .

[14]  Howard J. Hamilton,et al.  Interestingness measures for data mining: A survey , 2006, CSUR.

[15]  Sung-Hyuk Cha,et al.  On measuring the distance between histograms , 2002, Pattern Recognit..

[16]  V. R. Khapli,et al.  Comparison of Similarity Metrics for Thumbnail Based Image Retrieval , 2011 .

[17]  M. Hagedoorn Pattern matching using similarity measures , 2000 .

[18]  S. Cha Taxonomy of nominal type histogram distance measures , 2008 .

[19]  Yixin Chen,et al.  Kernel Density Metric Learning , 2013, 2013 IEEE 13th International Conference on Data Mining.

[20]  M. Braveen,et al.  Evaluation of Content Based Image Retrieval Systems Based on Color Feature , 2009 .

[21]  B. B. Meshram,et al.  Content based video retrieval systems , 2012, ArXiv.

[22]  B. M. ter Haar Romeny,et al.  Analysis of Distance/Similarity Measures for Diffusion Tensor Imaging , 2008 .

[23]  Ts Hedges TECHNICAL NOTE. AN EMPIRICAL MODIFICATION TO LINEAR WAVE THEORY. , 1976 .

[24]  Elena Deza,et al.  Encyclopedia of Distances , 2014 .

[25]  Rong Jin,et al.  Distance Metric Learning: A Comprehensive Survey , 2006 .