Visualization and measurement of ultrasonic wavefronts

The transmission of ultrasonic wavefronts through a medium and the reflection of these wavefronts from an object or interface depend upon the bulk mechanical properties of the medium or object. Measuring or visualizing the wavefront yields important information about various transmission media and objects under study and has found application in nondestructive evaluation, medical diagnosis, underwater imaging, and acoustic microscopy. This paper reviews the various methods by which ultrasonic wavefronts are detected, measured, and visualized. Special emphasis is placed on optical diffraction by ultrasound and optical interferometric detection of acoustic particle displacement. Shorter summaries are given of chemical, thermal, liquid crystal, electromechanical, and mechanical methods. The distinction between these methods are not always clear. For example, the displacement of an air/water interface by radiation force is a mechanical method even though the displacement may be recorded optically. Therefore, an attempt is made to distinguish between the physical effect of the wavefronts on the medium or measurement device as opposed to the process used to record that effect.

[1]  D. R. Newman Ultrasonic Schlieren System Using a Pulsed Gas Laser , 1973, IEEE Transactions on Sonics and Ultrasonics.

[2]  S. Sizgoric,et al.  An optical homodyne technique for measurement of amplitude and phase of subangstrom ultrasonic vibrations , 1969 .

[3]  G R Torr,et al.  A constant-flow calorimeter for the measurement of acoustic power at megahertz frequencies. , 1977, Physics in medicine and biology.

[4]  Jeffrey C. Bamber,et al.  The-effective directivity characteristic of a pulsed ultrasound transducer and its measurement by semi-automatic means , 1977 .

[5]  K. F. Etzold,et al.  System for Visualizing and Measuring Ultrasonic Wavefronts , 1975 .

[6]  C. V. Raman,et al.  The diffraction of light by high frequency sound waves: Part I. , 2012 .

[7]  E. Ackerman,et al.  Ceramic Probe Microphones , 1954 .

[8]  Glen Wade,et al.  Comparison of ideal performance of some real‐time acoustic imaging systems , 1974 .

[9]  H. Frost,et al.  Lorentz force hydrophones at megahertz frequencies: theory, practice and applications , 1978 .

[10]  S. Edelman,et al.  Direct Piezoelectric Effect in Polyvinylchloride Films , 1971 .

[11]  Louis R. Dragonette Schlieren Visualization of Radiation Caused by Illumination of Plates with Short Acoustical Pulses , 1972 .

[12]  Keigo Iizuka Technique of Mapping Acoustic Fields by Means of a Polaroid Film , 1970 .

[13]  L. R. Dragonette,et al.  A SCHLIEREN SYSTEM USED FOR MAKING MOVIES OF SOUND WAVES , 1971 .

[14]  E. Fukada,et al.  Piezoelectric Effect in Poly-γ-methyl-L-glutamate , 1966, Nature.

[15]  R. Stephens,et al.  The Pohlman cell as as a means of producing acoustic holograms , 1971 .

[16]  Floyd Dunn,et al.  Precision Calibration of Ultrasonic Fields by Thermoelectric Probes , 1957, IRE Transactions on Ultrasonic Engineering.

[17]  R. Mezrich,et al.  Ultrasonic waves: their interferometric measurement and display. , 1976, Applied optics.

[18]  New Procedure for Calculating Finite‐Amplitude Distortion , 1962 .

[19]  Robert T. Beyer,et al.  Frequency Spectrum of Finite Amplitude Ultrasonic Waves in Liquids , 1960 .

[20]  A. Alippi,et al.  Polarization interferometry in acousto‐optics , 1978 .

[21]  J. Jones A calorimetric method and apparatus for evaluating transducer assemblies , 1969, IEEE Transactions on Sonics and Ultrasonics.

[22]  S E Fick,et al.  Ultrasonic wave measurement by differential interferometry. , 1977, Applied optics.

[23]  J. A. Rooney Determination of acoustic power outputs in the microwatt-milliwatt range , 1973 .

[24]  W. Fry,et al.  Determination of Absolute Sound Levels and Acoustic Absorption Coefficients by Thermocouple Probes—Theory , 1954 .

[25]  Jack Blitz Fundamentals of Ultrasonics , 1967 .

[26]  W. Klein,et al.  Piezo‐Optic Coefficients of Liquids , 1967 .

[27]  Bill D. Cook Measurement from the nearfield of an ultrasonically produced phase grating , 1975 .

[28]  Symmetry of diffraction pattern obtained by diffraction of light by ultrasonic-waves , 1973 .

[29]  E. Hiedemann,et al.  Diffraction of Light by Ultrasonic Waves Progressing with Finite but Moderate Amplitudes in Liquids , 1958 .

[30]  F. Y. Poynton,et al.  The ultrasound image camera , 1963 .

[31]  Y. Kagawa,et al.  Detection and visualization of ultrasonic fields and vibrations by means of liquid crystals , 1974 .

[32]  B. D. Cook,et al.  Mapping ultrasonic fields with cholesteric liquid crystals , 1971 .

[33]  Robert C. Addison A Progress Report on the Sokolov Tube Utilizing a Metal Fiber Faceplate , 1974 .

[34]  J. H. Cole,et al.  Fiber‐optic detection of sound , 1977 .

[35]  B. D. Cook,et al.  Unified Approach to Ultrasonic Light Diffraction , 1967, IEEE Transactions on Sonics and Ultrasonics.

[36]  P. Debye,et al.  On the Scattering of Light by Supersonic Waves. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[37]  B. T. Cross,et al.  Schlieren techniques for ndt , 1970 .

[38]  G. S. Bennett A New Method for the Visualization and Measurement of Ultrasonic Fields , 1952 .

[39]  E. L. Meeks,et al.  Capacitance Microphone for Measurement of Small Attenuation Coefficients , 1967 .

[40]  René Lucas,et al.  Propriétés optiques des milieux solides et liquides soumis aux vibrations élastiques ultra sonores , 1932 .

[41]  S Stanic,et al.  Quantitative schlieren visualization. , 1978, Applied optics.

[42]  L. Fein An Ultrasonic Underwater “Point Source” Probe , 1948 .

[43]  N. Murayama,et al.  The strong piezoelectricity in polyvinylidene fluroide (PVDF) , 1976 .

[44]  J. L. Fergason,et al.  Cholesteric Structure-1 Optical Properties , 1966 .

[45]  L. W. Kessler,et al.  Ultrasonic Stimulation of Optical Scattering in Nematic Liquid Crystals , 1970 .

[46]  Bill D. Cook Proposed mapping of ultrasonic fields with conventional light diffraction , 1975 .

[47]  M. Bertolotti,et al.  Opto-acoustic modulator with a nematic liquid crystal , 1975 .

[48]  S. Nagaï,et al.  Acousto-optical effects in a nematic liquid crystal , 1977 .

[49]  M. Bertolotti,et al.  Ultrasonic modulation of light with a liquid crystal in the smectic‐A and nematic phases , 1975 .

[50]  R. Denis Characterization of ultrasonic transducers using cholesteric liquid crystals , 1978 .

[51]  K F Etzold,et al.  Differences in the attenuation of ultrasound by normal, benign, and malignant breast tissue , 1976, Journal of clinical ultrasound : JCU.

[52]  John E. Jacobs,et al.  Advances in the Sokoloff Tube , 1974 .

[53]  M. Bertolotti,et al.  Acoustic modulation of light by nematic liquid crystals , 1972 .

[54]  R. Mezrich,et al.  An Improved System for Visualizing and Measuring Ultrasonic Wavefronts , 1977 .

[55]  Curt A. Wiederhielm Ultrasonic Intensity Meter , 1956 .

[56]  Y. Kagawa,et al.  Acousto-optical and acousto-dielectric effects in a nematic liquid crystal , 1976 .

[57]  Richard A. Soref Liquid Crystals , 1973, Other Conferences.

[58]  L. Brillouin Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l'agitation thermique , 1922 .

[59]  Takahi Hasegawa,et al.  Acoustic‐Radiation Force on a Solid Elastic Sphere , 1969 .

[60]  A. J. Hayman,et al.  Observations of the propagation of very short ultrasonic pulses and their reflection by small targets , 1978 .

[61]  R. Pinoir,et al.  Action des ultrasons sur les couches sensibles , 1947 .

[62]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[63]  Laser Schlieren optical system for analyzing ultrasonic fields. , 1968 .