MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation

MRtrix3 is an open-source, cross-platform software package for medical image processing, analysis and visualization, with a particular emphasis on the investigation of the brain using diffusion MRI. It is implemented using a fast, modular and flexible general-purpose code framework for image data access and manipulation, enabling efficient development of new applications, whilst retaining high computational performance and a consistent command-line interface between applications. In this article, we provide a high-level overview of the features of the MRtrix3 framework and general-purpose image processing applications provided with the software.

[1]  S Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[2]  Michael J Ackerman,et al.  Engineering and algorithm design for an image processing Api: a technical report on ITK--the Insight Toolkit. , 2002, Studies in health technology and informatics.

[3]  Carme Uribe,et al.  Statistical inference in brain graphs using threshold‐free network‐based statistics , 2018, Human brain mapping.

[4]  Alan Connelly,et al.  Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information , 2012, NeuroImage.

[5]  Jan Sijbers,et al.  Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution , 2011, Human brain mapping.

[6]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[7]  Paul Suetens,et al.  Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model , 2015, NeuroImage.

[8]  Maxime Descoteaux,et al.  Dipy, a library for the analysis of diffusion MRI data , 2014, Front. Neuroinform..

[9]  Edward T. Bullmore,et al.  Network-based statistic: Identifying differences in brain networks , 2010, NeuroImage.

[10]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[11]  Alan Connelly,et al.  SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography , 2015, NeuroImage.

[12]  Klaus H. Maier-Hein,et al.  The Medical Imaging Interaction Toolkit: challenges and advances , 2013, International Journal of Computer Assisted Radiology and Surgery.

[13]  Derek K. Jones Tractography Gone Wild: Probabilistic Fibre Tracking Using the Wild Bootstrap With Diffusion Tensor MRI , 2008, IEEE Transactions on Medical Imaging.

[14]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[15]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[16]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[17]  Satrajit S. Ghosh,et al.  The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments , 2016, Scientific Data.

[18]  Jan Sijbers,et al.  Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data , 2014, NeuroImage.

[19]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[20]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[21]  Paul Suetens,et al.  Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography , 2014, NeuroImage.

[22]  Bibek Dhital,et al.  Gibbs‐ringing artifact removal based on local subvoxel‐shifts , 2015, Magnetic resonance in medicine.

[23]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[24]  Hangyi Jiang,et al.  DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking , 2006, Comput. Methods Programs Biomed..

[25]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[26]  Jan Sijbers,et al.  Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls , 2013, NeuroImage.

[27]  Timothy Edward John Behrens,et al.  Diffusion MRI : from quantitative measurement to in vivo neuroanatomy , 2014 .

[28]  Jan Sijbers,et al.  Denoising of diffusion MRI using random matrix theory , 2016, NeuroImage.

[29]  John Ashburner,et al.  SPM: A history , 2012, NeuroImage.

[30]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[31]  Alan Connelly,et al.  Investigating white matter fibre density and morphology using fixel-based analysis , 2017, NeuroImage.

[32]  Marti J. Anderson,et al.  Permutation Tests for Linear Models , 2001 .

[33]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[34]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[35]  Hui Zhang,et al.  Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement , 2017, NeuroImage.

[36]  Fernando Calamante,et al.  Track-weighted imaging methods: extracting information from a streamlines tractogram , 2017, Magnetic Resonance Materials in Physics, Biology and Medicine.

[37]  Alan Connelly,et al.  Connectivity-based fixel enhancement: Whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres , 2015, NeuroImage.

[38]  Alan Connelly,et al.  Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping , 2010, NeuroImage.

[39]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[40]  Satrajit S. Ghosh,et al.  BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods , 2016, bioRxiv.

[41]  A. Connelly,et al.  Determination of the appropriate b value and number of gradient directions for high‐angular‐resolution diffusion‐weighted imaging , 2013, NMR in biomedicine.

[42]  Derek K. Jones Diffusion MRI: Theory, methods, and applications , 2011 .

[43]  Stephen M. Smith,et al.  Permutation inference for the general linear model , 2014, NeuroImage.

[44]  Stuart Crozier,et al.  Symmetric diffeomorphic registration of fibre orientation distributions , 2011, NeuroImage.

[45]  Jan Sijbers,et al.  ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data , 2009 .

[46]  David N. Vaughan,et al.  Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment , 2018, Brain : a journal of neurology.

[47]  Alan Connelly,et al.  SIFT: Spherical-deconvolution informed filtering of tractograms , 2013, NeuroImage.

[48]  Max A. Viergever,et al.  Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data , 2014, NeuroImage.