Towards an Oversampling Method to Improve Hepatocellular Carcinoma Early Prediction

[1]  I. Rekik,et al.  Gender differences in cortical morphological networks , 2019, Brain Imaging and Behavior.

[2]  Mohammad Hossein Khosravi,et al.  Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016 , 2017, Lancet.

[3]  Miriam Seoane Santos,et al.  A new cluster-based oversampling method for improving survival prediction of hepatocellular carcinoma patients , 2015, J. Biomed. Informatics.

[4]  Martin N. Hebart,et al.  An Efficient Data Partitioning to Improve Classification Performance While Keeping Parameters Interpretable , 2016, PloS one.

[5]  Hung-Wen Chiu,et al.  Disease-free survival assessment by artificial neural networks for hepatocellular carcinoma patients after radiofrequency ablation. , 2017, Journal of the Formosan Medical Association = Taiwan yi zhi.

[6]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[7]  E. E. Houby A survey on applying machine learning techniques for management of diseases , 2018 .

[8]  Marcin Blachnik,et al.  Ensembles of Instance Selection Methods based on Feature Subset , 2014, KES.

[9]  Dimitrios I. Fotiadis,et al.  Machine learning applications in cancer prognosis and prediction , 2014, Computational and structural biotechnology journal.

[10]  Dragan Gamberger,et al.  Filtering Noisy Instances and Outliers , 2001 .

[11]  Ravi Shankar,et al.  A Firefly Algorithm Based Wrapper-Penalty Feature Selection Method for Cancer Diagnosis , 2018, ICCSA.