Efficient Perturbations for Handling Geometric Degeneracies

Abstract. This article defines input perturbations so that an algorithm designed under certain restrictions on the input can execute on arbitrary instances. A syntactic definition of perturbations is proposed and certain properties are specified under which an algorithm executed on perturbed input produces an output from which the exact answer can be recovered. A general framework is adopted for linear perturbations, which are efficient from the point of view of worst-case complexity. The deterministic scheme of Emiris and Canny [1] was the first efficient scheme and is extended in a consistent manner, most notably to the InSphere primitive. We introduce a variant scheme, applicable to a restricted class of algorithms, which is almost optimal in terms of algebraic as well as bit complexity. Neither scheme requires any symbolic computation and both are simple to use as illustrated by our implementation of a convex hull algorithm in arbitrary dimension. Empirical results and a concrete application in robotics are presented.

[1]  Seth J. Teller,et al.  Partitioning and ordering large radiosity computations , 1994, SIGGRAPH.

[2]  Kurt Mehlhorn,et al.  On degeneracy in geometric computations , 1994, SODA '94.

[3]  Michael L. Connolly,et al.  Molecular Interstitial Skeleton , 1991, Comput. Chem..

[4]  Ioannis Z. Emiris,et al.  A Complete Implementation for Computing General Dimensional Convex Hulls , 1998, Int. J. Comput. Geom. Appl..

[5]  Christian Buchta,et al.  On the Average Number of Maxima in a Set of Vectors , 1989, Inf. Process. Lett..

[6]  Ioannis Z. Emiris,et al.  Sparse elimination and applications in kinematics , 1994 .

[7]  Peter Schorn,et al.  Degeneracy in Geometric Computation and the Perturbation Approach , 1994, Comput. J..

[8]  Chee Yap Symbolic treatment of geometric degeneracies: Proceedings of the International IFIPS Conference on System Modeling and Optimization. Tokyo, 1987 , 1987 .

[9]  S. R. Czapor,et al.  Computer Algebra , 1983, Computing Supplementa.

[10]  John F. Canny,et al.  A General Approach to Removing Degeneracies , 1995, SIAM J. Comput..

[11]  J. Calmet Computer Algebra , 1982 .

[12]  A. S. Rao,et al.  Computing a Statistical Distribution of Stable Poses for a Polyhedron , 1992 .

[13]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[14]  John F. Canny,et al.  A practical method for the sparse resultant , 1993, ISSAC '93.

[15]  Raimund Seidel,et al.  The Nature and Meaning of Perturbations in Geometric Computing , 1994, STACS.

[16]  Dinesh Manocha,et al.  Efficient Contact Determination in Dynamic Environments , 1997, Int. J. Comput. Geom. Appl..

[17]  Dinesh Manocha,et al.  Multipolynomial resultants and linear algebra , 1992, ISSAC '92.

[18]  Saugata Basu,et al.  Computing roadmaps of semi-algebraic sets , 1996 .

[19]  Herbert Edelsbrunner,et al.  Computing a Ham-Sandwich Cut in Two Dimensions , 1986, J. Symb. Comput..

[20]  J. Boardman Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .

[21]  Walter Keller-Gehrig,et al.  Fast Algorithms for the Characteristic Polynomial , 1985, Theor. Comput. Sci..

[22]  J. Gathen Algebraic complexity theory , 1988 .

[23]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[24]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[25]  Dinesh Manocha,et al.  Fast contact determination in dynamic environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[26]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[27]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[28]  D. Michelucci An epsilon-Arithmetic for Removing Degeneracies , 1995 .

[29]  Kenneth Y. Goldberg,et al.  Bayesian grasping , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[30]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[31]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[32]  John F. Canny,et al.  An efficient approach to removing geometric degeneracies , 1992, SCG '92.

[33]  Chee-Keng Yap,et al.  A geometric consistency theorem for a symbolic perturbation scheme , 1988, SCG '88.

[34]  G. E. Collins,et al.  Real Zeros of Polynomials , 1983 .

[35]  Donald E. Knuth,et al.  Axioms and Hulls , 1992, Lecture Notes in Computer Science.

[36]  Carlo H. Séquin,et al.  Visibility preprocessing for interactive walkthroughs , 1991, SIGGRAPH.

[37]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[38]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[39]  Kenneth L. Clarkson,et al.  Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.