Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells

For efficient hole-extraction in solution processed organic solar cells the transparent indium-tin oxide (ITO) electrode is invariably pre-coated with a thin layer of the high work function conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrene-sulfonate). Herein we show that thin films of partially oxidised multi-wall and single-wall carbon nanotubes are equally effective at facilitating hole-extraction in efficient (similar to 2.7%) bulk-heterojunction organic solar cells based on poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C-61 butyric acid methyl ester (PCBM) blends. Crucially, in contrast to PEDOT:PSS, deposition is from aqueous solutions of low acidity (pH 6-7) ensuring compatibility with ITO and other emerging conducting oxides. Furthermore, thin oxidised carbon nanotube films offer greater transparency in the near-infrared as compared to PEDOT:PSS films of comparable thickness. The functionality of these nano-structured films is demonstrated in relatively large area devices (similar to 0.35 cm(2)) and the performance rationalised based on measurements of the electronic structure and morphology. (C) 2009 Elsevier B.V. All rights reserved.

[1]  K. Tada,et al.  Electronic energy states of organic interfaces studied by low-energy ultraviolet photoemission spectroscopy , 1999 .

[2]  Gustaf Winroth,et al.  Polyfluorene-based light-emitting diodes with an azide photocross-linked poly(3,4-ethylene dioxythiophene):(polystyrene sulfonic acid) hole-injecting layer , 2008 .

[3]  A. M. Rao,et al.  Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes , 1997, Science.

[4]  Y. Zhu,et al.  Investigation of a polythiophene interface using photoemission spectroscopy in combination with electrospray thin-film deposition , 2006 .

[5]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[6]  Y. Sohn,et al.  Regiorandom poly(3-hexylthiophene) on gold: Interfacial electronic structures and photoexcitation kinetics , 2007 .

[7]  Satoru Suzuki,et al.  Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles , 2000 .

[8]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[9]  Wilford N. Hansen,et al.  Standard reference surfaces for work function measurements in air , 2001 .

[10]  S. Ravi P. Silva,et al.  Interpenetrating multiwall carbon nanotube electrodes for organic solar cells , 2006 .

[11]  B. Jousselme,et al.  Elaboration of P3HT/CNT/PCBM Composites for Organic Photovoltaic Cells , 2007 .

[12]  A. Alexander,et al.  A Model for the Dependence of Carbon Nanotube Length on Acid Oxidation Time , 2007 .

[13]  John C. deMello,et al.  On the pseudo-symmetric current–voltage response of bulk heterojunction solar cells , 2008 .

[14]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[15]  R. Friend,et al.  Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer , 1999 .

[16]  Zhongfan Liu,et al.  Chemical Alignment of Oxidatively Shortened Single-Walled Carbon Nanotubes on Silver Surface , 2001 .

[17]  R. Hatton,et al.  The use of charge transfer interlayers to control hole injection in molecular organic light emitting diodes , 2002 .

[18]  Ricardo Izquierdo,et al.  Carbon nanotube sheets as electrodes in organic light-emitting diodes. , 2006 .

[19]  Garry Rumbles,et al.  Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode , 2006 .

[20]  Christoph J. Brabec,et al.  Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors , 2002 .

[21]  Kuzmany,et al.  Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes , 2000, Physical review letters.

[22]  C. N. R. Rao,et al.  Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes , 1996 .

[23]  Husnu Emrah Unalan,et al.  Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells , 2005 .

[24]  Franco Cacialli,et al.  Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes , 1999 .

[25]  Gang Li,et al.  Accurate Measurement and Characterization of Organic Solar Cells , 2006 .

[26]  P. Eklund,et al.  Purification of Single-Wall Carbon Nanotubes by Selective Microwave Heating of Catalyst Particles , 2002 .

[27]  Christoph J. Brabec,et al.  Characterization of Organic Solar Cells: the Importance of Device Layout , 2007 .

[28]  William R. Salaneck,et al.  Fermi-level pinning at conjugated polymer interfaces , 2006 .

[29]  Zhiqiang Gao,et al.  Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer , 2002 .

[30]  Stephen R. Forrest,et al.  The Limits to Organic Photovoltaic Cell Efficiency , 2005 .

[31]  Jenny Nelson,et al.  Using Self‐Assembling Dipole Molecules to Improve Charge Collection in Molecular Solar Cells , 2006 .

[32]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[33]  Un Jeong Kim,et al.  Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[34]  Zhenan Bao,et al.  Organic solar cells with solution-processed graphene transparent electrodes , 2008 .

[35]  P. Eklund,et al.  Debundling and dissolution of single-walled carbon nanotubes in amide solvents. , 2004, Journal of the American Chemical Society.

[36]  G. Grüner,et al.  Carbon nanotube films for transparent and plastic electronics , 2006 .

[37]  W. R. Salaneck,et al.  Transition between energy level alignment regimes at a low band gap polymer-electrode interfaces , 2006 .

[38]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[39]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[40]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[41]  Donal D. C. Bradley,et al.  Fabrication of Highly Conductive Poly(3,4‐ethylenedioxythiophene) Films by Vapor Phase Polymerization and Their Application in Efficient Organic Light‐Emitting Diodes , 2007 .

[42]  A. M. Rao,et al.  Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering , 1997, Nature.

[43]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .