Role of Al Distribution in CO2 Adsorption Capacity in RHO Zeolites

[1]  S. Mintova,et al.  Engineering RHO Nanozeolite: Controlling the Particle Morphology, Al and Cation Content, Stability, and Flexibility , 2022, ACS Applied Energy Materials.

[2]  A. Kulkarni,et al.  Cs-RHO Goes from Worst to Best as Water Enhances Equilibrium CO2 Adsorption via Phase Change. , 2021, Langmuir : the ACS journal of surfaces and colloids.

[3]  David N. Miller,et al.  Cation Ordering and Exsolution in Copper‐Containing Forms of the Flexible Zeolite Rho (Cu,M‐Rho; M=H, Na) and Their Consequences for CO2 Adsorption , 2021, Chemistry.

[4]  S. Mintova,et al.  CO2 adsorption in nanosized RHO zeolites with different chemical compositions and crystallite sizes , 2020 .

[5]  S. Mintova,et al.  Flexible Template-Free RHO Nanosized Zeolite for Selective CO2 Adsorption , 2020, Chemistry of Materials.

[6]  Shudong Wang,et al.  Economical synthesis strategy of RHO zeolites with fine-tuned composition and porosity for enhanced trace CO2 capture , 2019, Chemical Engineering Journal.

[7]  Xin Guo,et al.  Thermochemistry of formation of ion exchanged zeolite RHO , 2019, Microporous and Mesoporous Materials.

[8]  S. Hong,et al.  CO2 Adsorption in the RHO Family of Embedded Isoreticular Zeolites , 2018, The Journal of Physical Chemistry C.

[9]  N. Hedin,et al.  Site-Specific Adsorption of CO2 in Zeolite NaK-A , 2018, The Journal of Physical Chemistry C.

[10]  D. Sholl,et al.  The Effect of Aluminum Short-Range Ordering on Carbon Dioxide Adsorption in Zeolites , 2018 .

[11]  F. Xiao,et al.  Mapping Al Distributions in SSZ-13 Zeolites from 23Na Solid-State NMR Spectroscopy and DFT Calculations , 2018 .

[12]  J. Čejka,et al.  The effect of pore size dimensions in isoreticular zeolites on carbon dioxide adsorption heats , 2018 .

[13]  S. Hong,et al.  Zeolites ZSM-25 and PST-20: Selective Carbon Dioxide Adsorbents at High Pressures , 2017 .

[14]  S. Brandani,et al.  Cation Control of Molecular Sieving by Flexible Li-Containing Zeolite Rho , 2016 .

[15]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[16]  M. Palomino,et al.  Cation Gating and Relocation during the Highly Selective “Trapdoor” Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho , 2014 .

[17]  Gang Li,et al.  Discriminative separation of gases by a "molecular trapdoor" mechanism in chabazite zeolites. , 2012, Journal of the American Chemical Society.

[18]  Li-Chiang Lin,et al.  Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. , 2012, Journal of the American Chemical Society.

[19]  Stefano Brandani,et al.  Understanding carbon dioxide adsorption on univalent cation forms of the flexible zeolite Rho at conditions relevant to carbon capture from flue gases. , 2012, Journal of the American Chemical Society.

[20]  Craig M. Brown,et al.  Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. , 2012, Journal of the American Chemical Society.

[21]  G. Busca,et al.  On the mechanism of adsorption and separation of CO2 on LTA zeolites : An IR investigation , 2008 .

[22]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  G. Bergeret,et al.  Crystallographic Determination of the Positions of the Copper Cations in Zeolite MFI , 2007 .

[24]  H. Weber,et al.  Hydrated Cs+-Exchanged MFI Zeolites: Location of Extraframework Species in CsxHyMFI·zH2O Phases from X-ray Powder Diffraction and Differential Molar Adsorption Calorimetry , 2007 .

[25]  J. Hanson,et al.  New Insight into Cation Relocations within the Pores of Zeolite Rho: In Situ Synchrotron X-Ray and Neutron Powder Diffraction Studies of Pb- and Cd-Exchanged Rho , 2001 .

[26]  J. Hanson,et al.  Understanding negative thermal expansion and ‘trap door’ cation relocations in zeolite rho , 2000 .

[27]  R. E. Raab,et al.  Measurement of the electric quadrupole moments of CO2, CO, N2, Cl2 and BF3 , 1998 .

[28]  G. Stucky,et al.  Flexibility of the zeolite RHO framework. In situ X-ray and neutron powder structural characterization of divalent cation-exchanged zeolite RHO , 1990 .

[29]  R. E. Raab,et al.  Measurement of the electric quadrupole moments of CO 2 , CO and N 2 , 1989 .

[30]  A. J. Vega,et al.  Characterization of NH4-rho and vacuum-calcined H-rho zeolites by multinuclear NMR spectroscopy , 1987 .

[31]  G. Engelhardt,et al.  A semi-empirical quantum-chemical rationalization of the correlation between SiOSi angles and 29Si NMR chemical shifts of silica polymorphs and framework aluminosilicates (zeolites) , 1984 .

[32]  J. Parise,et al.  Structural changes occurring upon dehydration of zeolite Rho. A study using neutron powder diffraction and distance-least-squares structural modeling , 1984 .

[33]  E. Prince,et al.  The structure of cesium-exchanged zeolite-RhO at 293K and 493K determined from high resolution neutron powder data , 1983 .

[34]  R. M. Barrer,et al.  Zeolitic carbon dioxide: energetics and equilibria in relation to exchangeable cations in faujasite , 1965 .