Baryonic models of ultra-low-mass compact stars for the central compact object in HESS J1731-347

[1]  J. Horvath,et al.  A light strange star in the remnant HESS J1731-347: Minimal consistency checks , 2023, Astronomy & Astrophysics.

[2]  L. Brodie,et al.  Nuclear and hybrid equations of state in light of the low-mass compact star in HESS J1731-347 , 2023, Physical Review C.

[3]  A. Sedrakian,et al.  Heavy baryons in compact stars , 2022, Progress in Particle and Nuclear Physics.

[4]  A. Drago,et al.  Is the Compact Object Associated with HESS J1731-347 a Strange Quark Star? A Possible Astrophysical Scenario for Its Formation , 2022, The Astrophysical Journal.

[5]  G. Pühlhofer,et al.  A strangely light neutron star within a supernova remnant , 2022, Nature Astronomy.

[6]  A. Filippenko,et al.  PSR J0952−0607: The Fastest and Heaviest Known Galactic Neutron Star , 2022, The Astrophysical Journal Letters.

[7]  W. Nazarewicz,et al.  Combined Theoretical Analysis of the Parity-Violating Asymmetry for ^{48}Ca and ^{208}Pb. , 2022, Physical review letters.

[8]  Thomas Jefferson National Accelerator Facility,et al.  Precision Determination of the Neutral Weak Form Factor of ^{48}Ca. , 2022, Physical review letters.

[9]  F. Gulminelli,et al.  Can we decipher the composition of the core of a neutron star? , 2021, 2111.04520.

[10]  W. Ho,et al.  Model-independent constraints on superfluidity from the cooling neutron star in Cassiopeia A , 2021, 2106.05692.

[11]  W. Nazarewicz,et al.  Information Content of the Parity-Violating Asymmetry in ^{208}Pb. , 2021, Physical review letters.

[12]  I. Cognard,et al.  The Radius of PSR J0740+6620 from NICER and XMM-Newton Data , 2021, The Astrophysical Journal Letters.

[13]  T. E. Riley,et al.  A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy , 2021, The Astrophysical Journal Letters.

[14]  B. W. Meyers,et al.  Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620 , 2021, The Astrophysical Journal Letters.

[15]  J. Napolitano,et al.  Accurate Determination of the Neutron Skin Thickness of ^{208}Pb through Parity-Violation in Electron Scattering. , 2021, Physical review letters.

[16]  A. Schwenk,et al.  New equations of state constrained by nuclear physics, observations, and QCD calculations of high-density nuclear matter , 2021, Physical Review C.

[17]  M. Oertel,et al.  Maximum mass of compact stars from gravitational wave events with finite-temperature equations of state , 2021, Physical Review C.

[18]  A. Raduta Δ-admixed neutron stars: Spinodal instabilities and dUrca processes , 2021, 2101.03718.

[19]  C. Horowitz,et al.  Implications of PREX-2 on the Equation of State of Neutron-Rich Matter. , 2021, Physical review letters.

[20]  A. Sedrakian,et al.  Rapidly rotating Δ-resonance-admixed hypernuclear compact stars , 2020, 2010.02901.

[21]  A. Sedrakian,et al.  Confronting GW190814 with hyperonization in dense matter and hypernuclear compact stars , 2020, 2007.09683.

[22]  C. Horowitz,et al.  GW190814: Impact of a 2.6 solar mass neutron star on nucleonic equations of state , 2020, 2007.03799.

[23]  J. Melendez,et al.  How Well Do We Know the Neutron-Matter Equation of State at the Densities Inside Neutron Stars? A Bayesian Approach with Correlated Uncertainties. , 2020, Physical review letters.

[24]  Keith C. Gendreau,et al.  A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation , 2019, The Astrophysical Journal.

[25]  W. Ho,et al.  PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter , 2019, The Astrophysical Journal.

[26]  M. Alford,et al.  Relativistic hybrid stars with sequential first-order phase transitions and heavy-baryon envelopes , 2019, Physical Review D.

[27]  À. Ramos,et al.  Interplay between Delta Particles and Hyperons in Neutron Stars , 2019, The Astrophysical Journal.

[28]  M. Shibata,et al.  Constraint on the maximum mass of neutron stars using GW170817 event , 2019, Physical Review D.

[29]  R. Lynch,et al.  Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar , 2019, Nature Astronomy.

[30]  A. Sedrakian,et al.  Implications from GW170817 for Δ-isobar Admixed Hypernuclear Compact Stars , 2019, The Astrophysical Journal.

[31]  A. Sedrakian,et al.  Constraining compact star properties with nuclear saturation parameters , 2019, Physical Review C.

[32]  M. Shibata,et al.  Revisiting the Lower Bound on Tidal Deformability Derived by AT 2017gfo , 2019, The Astrophysical Journal.

[33]  B. A. Boom,et al.  Properties of the Binary Neutron Star Merger GW170817 , 2019 .

[34]  M. Shibata,et al.  On the minimum mass of neutron stars , 2018, Monthly Notices of the Royal Astronomical Society.

[35]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[36]  S. Smartt,et al.  Constraints on the neutron star equation of state from AT2017gfo using radiative transfer simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[37]  Duncan A. Brown,et al.  Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. , 2018, Physical review letters.

[38]  A. Sedrakian,et al.  Competition between delta isobars and hyperons and properties of compact stars , 2018, Physics Letters B.

[39]  W. Long,et al.  Hypernuclear stars from relativistic Hartree-Fock density functional theory , 2018, The European Physical Journal A.

[40]  Nai-Bo Zhang,et al.  Combined Constraints on the Equation of State of Dense Neutron-rich Matter from Terrestrial Nuclear Experiments and Observations of Neutron Stars , 2018, The Astrophysical Journal.

[41]  M. Ruiz,et al.  GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. , 2017, Physical review. D..

[42]  L. Rezzolla,et al.  Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars , 2017, 1711.00314.

[43]  P. Cowperthwaite,et al.  The Combined Ultraviolet, Optical, and Near-infrared Light Curves of the Kilonova Associated with the Binary Neutron Star Merger GW170817: Unified Data Set, Analytic Models, and Physical Implications , 2017, 1710.11576.

[44]  Yuichiro Sekiguchi,et al.  Modeling GW170817 based on numerical relativity and its implications , 2017, 1710.07579.

[45]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[46]  B. Metzger,et al.  Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817 , 2017, 1710.05938.

[47]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[48]  Armin Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera , 2017, The Astrophysical Journal.

[49]  F. Gulminelli,et al.  The equation of state for dense nucleonic matter from a meta-modeling (II): predictions for neutron stars properties , 2017, 1708.06895.

[50]  F. Gulminelli,et al.  Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects , 2017, 1708.06894.

[51]  C. Providência,et al.  (No) neutron star maximum mass constraint from hypernuclei , 2017, 1701.06373.

[52]  M. Oertel,et al.  Equations of state for supernovae and compact stars , 2016, 1610.03361.

[53]  À. Ramos,et al.  EQUATION OF STATE FOR NUCLEONIC AND HYPERONIC NEUTRON STARS WITH MASS AND RADIUS CONSTRAINTS , 2016, 1610.00919.

[54]  N. Yunes,et al.  Approximate Universal Relations for Neutron Stars and Quark Stars , 2016, 1608.02582.

[55]  P. Freire,et al.  Masses, Radii, and the Equation of State of Neutron Stars , 2016, 1603.02698.

[56]  M. Mclaughlin,et al.  PULSAR J0453+1559: A DOUBLE NEUTRON STAR SYSTEM WITH A LARGE MASS ASYMMETRY , 2015, 1509.08805.

[57]  A. Feliciello,et al.  Experimental review of hypernuclear physics: recent achievements and future perspectives , 2015, Reports on progress in physics. Physical Society.

[58]  A. Drago,et al.  Early appearance of Delta isobars in neutron stars , 2014 .

[59]  C. Providência,et al.  Hyperons in neutron star matter within relativistic mean-field models , 2014, Physics of Particles and Nuclei.

[60]  J. T. Yang,et al.  Double-$\Lambda$ hypernuclei observed in a hybrid emulsion experiment , 2013 .

[61]  G. Colucci,et al.  Equation of state of hypernuclear matter: Impact of hyperon-scalar-meson couplings , 2013, 1302.6925.

[62]  N. Yunes,et al.  I-Love-Q: Unexpected Universal Relations for Neutron Stars and Quark Stars , 2013, Science.

[63]  D. Chatterjee,et al.  Hyperons and massive neutron stars: Vector repulsion and SU(3) symmetry , 2011, 1112.0234.

[64]  D. Chatterjee,et al.  Hyperons and massive neutron stars: The role of hyperon potentials , 2011, 1111.6049.

[65]  S. Yang,et al.  Electromagnetic excitation of the Δ(1232)-resonance , 2006, hep-ph/0609004.

[66]  P. Ring,et al.  New relativistic mean-field interaction with density-dependent meson-nucleon couplings , 2005 .

[67]  E. Hungerford,et al.  Strangeness nuclear physics , 2000, 1605.00557.

[68]  J. Walecka,et al.  Recent progress in quantum hadrodynamics , 1997, nucl-th/9701058.

[69]  H. Stöcker,et al.  Multiply Strange Nuclear Systems , 1994 .

[70]  H. Bethe,et al.  Neutron star matter , 1971 .

[71]  P. K. Panda,et al.  GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object , 2020 .

[72]  P. R. Metidieri INTERPLAY BETWEEN ∆ PARTICLES AND HYPERONS IN NEUTRON STARS , 2018 .

[73]  Brien,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[74]  A. Gautam,et al.  STATE , 2016, Intell. Serv. Robotics.

[75]  G. Baym,et al.  The Ground state of matter at high densities: Equation of state and stellar models , 1971 .