A General Left-Definite Theory for Certain Self-Adjoint Operators with Applications to Differential Equations

We show that any self-adjoint operator A (bounded or unbounded) in a Hilbert space H=(V,(·,·)) that is bounded below generates a continuum of Hilbert spaces {Hr}r>0 and a continuum of self-adjoint operators {Ar}r>0. For reasons originating in the theory of differential operators, we call each Hr the rth left-definite space and each Ar the rth left-definite operator associated with (H,A). Each space Hr can be seen as the closure of the domain D(Ar) of the self-adjoint operator Ar in the topology generated from the inner product (Arx,y) (x,y∈D(Ar)). Furthermore, each Ar is a unique self-adjoint restriction of A in Hr. We show that the spectrum of each Ar agrees with the spectrum of A and the domain of each Ar is characterized in terms of another left-definite space. The Hilbert space spectral theorem plays a fundamental role in these constructions. We apply these results to two examples, including the classical Laguerre differential expression l[·] in which we explicitly find the left-definite spaces and left-definite operators associated with A, the self-adjoint operator generated by l[·] in L2((0,∞);tαe−t) having the Laguerre polynomials as eigenfunctions.

[1]  E. C. Titchmarsh,et al.  Reviews , 1947, The Mathematical Gazette.

[2]  Anton Zettl,et al.  Semi-boundedness of Ordinary Differential Operators , 1995 .

[3]  W. N. Everitt,et al.  On second-order left-definite boundary value problems , 1982 .

[4]  The left-definite Legendre type boundary problem , 1991 .

[5]  F. Riesz FUNCTIONAL ANALYSIS , 2020, Systems Engineering Principles and Practice.

[6]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[7]  H. Weyl,et al.  Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .

[8]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[9]  W. Rudin Real and complex analysis , 1968 .

[10]  A. Krall,et al.  Differential operators and the Laguerre type polynomials , 1992 .

[11]  Rolf Vonhoff,et al.  A Left-Definite Study of Legendre’s Differential Equation and of the Fourth-Order Legendre Type Differential Equation , 2000 .

[12]  Lance L. Littlejohn,et al.  Differential operators and the Legendre type polynomials , 1988, Differential and Integral Equations.

[13]  Åke Pleijel On the boundary condition for the Legendre polynomials , 1976 .

[14]  Å. Pleijel,et al.  On Legendre's Polynomials , 1976 .

[15]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[16]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[17]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[18]  Gangjoon Yoon,et al.  Symmetrizability of differential equations having orthogonal polynomial solutions , 1997 .

[19]  Qingkai Kong,et al.  Left-Definite Sturm–Liouville Problems , 2001 .

[20]  Left‐Definite Regular Hamiltonian Systems , 1995 .

[21]  J. Weidmann,et al.  Spectral Theory of Ordinary Differential Operators , 1987 .

[22]  Lance L. Littlejohn,et al.  ON SOME PROPERTIES OF THE LEGENDRE TYPE DIFFERENTIAL EXPRESSION , 1990 .

[23]  H. L. Krall,et al.  Certain differential equations for Tchebycheff polynomials , 1938 .

[24]  A. Krall REGULAR LEFT DEFINITE BOUNDARY VALUE PROBLEMS OF EVEN ORDER , 1992 .

[25]  A. Krall,et al.  SELF-ADJOINTNESS FOR THE WEYL PROBLEM UNDER AN ENERGY NORM , 1995 .

[26]  A. Krall,et al.  The Laguerre Type Operator in a Left Definite Hilbert Space , 1995 .

[27]  E. Kamke Differentialgleichungen : Lösungsmethoden und Lösungen , 1977 .

[28]  P. Goldbart,et al.  Linear differential operators , 1967 .

[29]  Wn Everitt,et al.  Legendre polynomials and singular differential operators , 1980 .

[30]  T. Suslina,et al.  Spectral theory of differential operators , 1995 .

[31]  A. Krall,et al.  THE LEGENDRE POLYNOMIALS UNDER A LEFT DEFINITE ENERGY NORM , 1993 .

[32]  K. H. Kwon,et al.  SOBOLEV ORTHOGONAL POLYNOMIALS AND SECOND ORDER DIFFERENTIAL EQUATION II , 1996 .

[33]  W. N. Everitt,et al.  PRODUCTS OF DIFFERENTIAL EXPRESSIONS WITHOUT SMOOTHNESS ASSUMPTIONS , 1978 .

[34]  Don Hinton Spectral Theory & Computational Methods of Sturm-Liouville Problems , 1997 .

[35]  A. Schneider,et al.  Spectral Theory for Left-Definite Singular Systems of Differential Equations I , 1974 .