A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations

This work is devoted to the derivation of a fully well-balanced numerical scheme for the well-known shallow-water model. During the last two decades, several well-balanced strategies have been introduced with a special attention to the exact capture of the stationary states associated with the so-called lake at rest. By fully well-balanced, we mean here that the proposed Godunov-type method is also able to preserve stationary states with non zero velocity. The numerical procedure is shown to preserve the positiveness of the water height and satisfies a discrete entropy inequality.

[1]  Tomás Morales de Luna,et al.  A Subsonic-Well-Balanced Reconstruction Scheme for Shallow Water Flows , 2010, SIAM J. Numer. Anal..

[2]  Christophe Chalons,et al.  Relaxation approximation of the Euler equations , 2008 .

[3]  Manuel J. Castro,et al.  WELL-BALANCED NUMERICAL SCHEMES BASED ON A GENERALIZED HYDROSTATIC RECONSTRUCTION TECHNIQUE , 2007 .

[4]  Jostein R. Natvig,et al.  Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows , 2006, J. Comput. Phys..

[5]  Yulong Xing,et al.  High-order well-balanced finite volume WENO schemes for shallow water equation with moving water , 2007, J. Comput. Phys..

[6]  A. Leroux,et al.  A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: the resonance phenomenon , 2004 .

[7]  T. Gallouët,et al.  Some approximate Godunov schemes to compute shallow-water equations with topography , 2003 .

[8]  Pierre-Arnaud Raviart,et al.  A NONCONSERVATIVE HYPERBOLIC SYSTEM MODELING SPRAY DYNAMICS. PART I: SOLUTION OF THE RIEMANN PROBLEM , 1995 .

[9]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[10]  L. Gosse A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms☆ , 2000 .

[11]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[12]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[13]  A. Khe,et al.  HIGH ORDER WELL-BALANCED SCHEMES BASED ON NUMERICAL RECONSTRUCTION OF THE EQUILIBRIUM VARIABLES , 2010 .

[14]  Yulong Xing,et al.  Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium , 2014, J. Comput. Phys..

[15]  Gérard Gallice,et al.  Positive and Entropy Stable Godunov-type Schemes for Gas Dynamics and MHD Equations in Lagrangian or Eulerian Coordinates , 2003, Numerische Mathematik.

[16]  Christophe Berthon,et al.  Numerical approximations of the 10-moment Gaussian closure , 2006, Math. Comput..

[17]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[18]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[19]  Yulong Xing,et al.  On the Advantage of Well-Balanced Schemes for Moving-Water Equilibria of the Shallow Water Equations , 2011, J. Sci. Comput..

[20]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[21]  Steve Bryson,et al.  Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system , 2011 .

[22]  Jean-Marc Hérard,et al.  Un schma simple pour les quations de Saint-Venant , 1998 .

[23]  Yulong Xing,et al.  High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms , 2006, J. Comput. Phys..

[24]  Christian Klingenberg,et al.  A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves , 2010, Numerische Mathematik.

[25]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[26]  Philippe G. LeFloch,et al.  A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime , 2011, J. Comput. Phys..

[27]  T. Morales de Luna,et al.  On a shallow water model for the simulation of turbidity currents , 2009 .

[28]  Shi Jin,et al.  A steady-state capturing method for hyperbolic systems with geometrical source terms , 2001 .

[29]  Benoît Perthame,et al.  A variant of Van Leer's method for multidimensional systems of conservation laws , 1994 .

[30]  Christophe Berthon,et al.  Efficient well-balanced hydrostatic upwind schemes for shallow-water equations , 2012, J. Comput. Phys..

[31]  M. Thanh,et al.  The Riemann problem for the shallow water equations with discontinuous topography , 2007, 0712.3778.

[32]  Manuel Jesús Castro Díaz,et al.  Well-Balanced High Order Extensions of Godunov's Method for Semilinear Balance Laws , 2008, SIAM J. Numer. Anal..

[33]  Yulong Xing,et al.  Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations , 2010 .

[34]  Q. Liang,et al.  Numerical resolution of well-balanced shallow water equations with complex source terms , 2009 .

[35]  Christophe Berthon,et al.  Robustness of MUSCL schemes for 2D unstructured meshes , 2006, J. Comput. Phys..

[36]  P. Raviart,et al.  GODUNOV-TYPE SCHEMES FOR HYPERBOLIC SYSTEMS WITH PARAMETER-DEPENDENT SOURCE: THE CASE OF EULER SYSTEM WITH FRICTION , 2010 .

[37]  N. Gouta,et al.  A finite volume solver for 1D shallow‐water equations applied to an actual river , 2002 .

[38]  Carlos Parés,et al.  On the well-balance property of Roe?s method for nonconservative hyperbolic systems , 2004 .

[39]  G. Gallice,et al.  Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source , 2002 .

[40]  Christian Klingenberg,et al.  A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework , 2007, Numerische Mathematik.

[41]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .