Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization

Simulation-based optimization methods have been recently proposed for calibrating geotechnical models from laboratory and field tests. In these methods, geotechnical parameters are identified by matching model predictions to experimental data, i.e. by minimizing an objective function that measures the difference between the two. Expensive computational models, such as finite difference or finite element models are often required to simulate laboratory or field geotechnical tests. In such cases, simulation-based optimization might prove demanding since every evaluation of the objective function requires a new model simulation until the optimum set of parameter values is achieved. This paper introduces a novel simulation-based “hybrid moving boundary particle swarm optimization” (hmPSO) algorithm that enables calibration of geotechnical models from laboratory or field data. The hmPSO has proven effective in searching for model parameter values and, unlike other optimization methods, does not require information about the gradient of the objective function. Serial and parallel implementations of hmPSO have been validated in this work against a number of benchmarks, including numerical tests, and a challenging geotechnical problem consisting of the calibration of a water infiltration model for unsaturated soils. The latter application demonstrates the potential of hmPSO for interpreting laboratory and field tests as well as a tool for general back-analysis of geotechnical case studies.

[1]  Frans van den Bergh,et al.  A NICHING PARTICLE SWARM OPTIMIZER , 2002 .

[2]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[3]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[4]  Jean-Michel Renders,et al.  Hybrid methods using genetic algorithms for global optimization , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[5]  Thomas Kiel Rasmussen,et al.  Hybrid Particle Swarm Optimiser with breeding and subpopulations , 2001 .

[6]  P. Fourie,et al.  The particle swarm optimization algorithm in size and shape optimization , 2002 .

[7]  Kennet Axelsson,et al.  Optimization routine for identification of model parameters in soil plasticity , 2001 .

[8]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[9]  Raj Mittra,et al.  A Sub-boundary Approach for Enhanced Particle Swarm Optimization and Its Application to the Design of Artificial Magnetic Conductors , 2007, IEEE Transactions on Antennas and Propagation.

[10]  Kennet Axelsson,et al.  On a constitutive driver as a useful tool in soil plasticity , 1999 .

[11]  B J Fregly,et al.  Parallel global optimization with the particle swarm algorithm , 2004, International journal for numerical methods in engineering.

[12]  YoungSu Yun Hybrid genetic algorithm with adaptive local search scheme , 2006, Comput. Ind. Eng..

[13]  Charles E. Augarde,et al.  Identification of Hydraulic Parameters for Unsaturated Soils Using Particle Swarm Optimization , 2008 .

[14]  Xiaodong Li,et al.  Adaptively choosing niching parameters in a PSO , 2006, GECCO.

[15]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[16]  John Yen,et al.  A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[17]  Russell C. Eberhart,et al.  Adaptive particle swarm optimization: detection and response to dynamic systems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[18]  Yutian Liu,et al.  An adaptive PSO algorithm for reactive power optimization , 2003 .

[19]  Min Gui,et al.  Adding Local Search to Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[20]  Wenjun Zhang,et al.  Dissipative particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[21]  J. Šimůnek Parameter estimation of unsaturated soil hydraulic properties from transient flow processes , 1998 .

[22]  J. S. Vesterstrom,et al.  Division of labor in particle swarm optimisation , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[23]  Shu-Kai S. Fan,et al.  A hybrid simplex search and particle swarm optimization for unconstrained optimization , 2007, Eur. J. Oper. Res..

[24]  Shu-Kai S. Fan,et al.  Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions , 2004 .

[25]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[26]  Erick Cantú-Paz,et al.  Markov chain models of parallel genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[27]  M. Celia,et al.  A General Mass-Conservative Numerical Solution for the Unsaturated Flow Equation , 1990 .

[28]  T. Krink,et al.  Extending particle swarm optimisers with self-organized criticality , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[29]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[30]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization , 2002 .

[31]  Pierre-Yves Hicher,et al.  IDENTIFICATION OF SOIL PARAMETERS BY INVERSE ANALYSIS , 2001 .

[32]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[33]  Kamran Behdinan,et al.  Particle swarm approach for structural design optimization , 2007 .

[34]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[35]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[36]  Leandro dos Santos Coelho,et al.  Particle Swarm Optimization with Quasi-Newton Local Search for Solving Economic Dispatch Problem , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[37]  Y. Mualem,et al.  Hysteretical models for prediction of the hydraulic conductivity of unsaturated porous media , 1976 .