Solving stable generalized Lyapunov equations with the matrix sign function

We investigate the numerical solution of the stable generalized Lyapunov equation via the sign function method. This approach has already been proposed to solve standard Lyapunov equations in several publications. The extension to the generalized case is straightforward. We consider some modifications and discuss how to solve generalized Lyapunov equations with semidefinite constant term for the Cholesky factor. The basic computational tools of the method are basic linear algebra operations that can be implemented efficiently on modern computer architectures and in particular on parallel computers. Hence, a considerable speed-up as compared to the Bartels–Stewart and Hammarling methods is to be expected. We compare the algorithms by performing a variety of numerical tests.

[1]  Alan J. Laub,et al.  A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case , 1998 .

[2]  Interpolation of non-smooth functions on anisotropic finite element meshes , 1999 .

[3]  A. Varga A note on Hammarling's algorithm for the discrete Lyapunov equation , 1990 .

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  J. Demmel,et al.  Using the Matrix Sign Function to Compute Invariant Subspaces , 1998, SIAM J. Matrix Anal. Appl..

[6]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[7]  Rudolf A. Römer,et al.  Weak delocalization due to long-range interaction for two electrons in a random potential chain , 1998 .

[8]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[9]  R. Byers Solving the algebraic Riccati equation with the matrix sign function , 1987 .

[10]  E. Denman,et al.  The matrix sign function and computations in systems , 1976 .

[11]  L. Grabowsky MPI-basierte Koppelrandkommunikation und Einfluß der Partitionierung im 3D-Fall , 1998 .

[12]  R. A. Römer,et al.  The two-dimensional Anderson model of localization with random hopping , 1997 .

[13]  Judith D. Gardiner Stabilizing control for second-order models and positive real systems , 1992 .

[14]  M. Jung,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern , 2022 .

[15]  Alan J. Laub,et al.  Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.

[16]  I. Rosen,et al.  A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations , 1995 .

[17]  Thilo Penzl,et al.  Numerical solution of generalized Lyapunov equations , 1998, Adv. Comput. Math..

[18]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[19]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[20]  James Demmel,et al.  Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.

[21]  Alan J. Laub,et al.  On Scaling Newton's Method for Polar Decomposition and the Matrix Sign Function , 1990, 1990 American Control Conference.

[22]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[23]  L. Balzer Accelerated convergence of the matrix sign function method of solving Lyapunov, Riccati and other matrix equations , 1980 .

[24]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[25]  Izchak Lewkowicz,et al.  Convex invertible cones of matrices — a unified framework for the equations of Sylvester, Lyapunov and Riccati , 1999 .

[26]  S. Nicaise,et al.  The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges , 1998 .

[27]  R. Byers,et al.  The Matrix Sign Function Method and the Computation of Invariant Subspaces , 1997, SIAM J. Matrix Anal. Appl..

[28]  M. Thess,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern , 2022 .

[29]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[30]  E. D. Denman,et al.  A New Solution Method for the Lyapunov Matrix Equation , 1975 .

[31]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[32]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[33]  Andras Varga,et al.  Computation of J-innerouter factorizations of rational matrices , 1998 .

[34]  Alexander Punnoose,et al.  The Mott-Anderson transition in the disordered one-dimensional Hubbard model , 1997 .

[35]  Michael Schreiber,et al.  MONTE CARLO SIMULATIONS OF THE DYNAMICAL BEHAVIOR OF THE COULOMB GLASS , 1997 .

[36]  A. Laub,et al.  Matrix-sign algorithms for Riccati equations , 1992 .

[37]  Alan J. Laub,et al.  Algorithm 705; a FORTRAN-77 software package for solving the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.

[38]  Arnd Meyer,et al.  Hierarchically preconditioned parallel CG-solvers with and without coarse-matrix-solvers inside FEAP , 2005 .

[39]  B. Benhammouda Rank-revealing top-down ULV factorizations , 1998 .

[40]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[41]  M. Schreiber,et al.  Level-spacing distributions of planar quasiperiodic tight-binding models , 1997, cond-mat/9710006.

[42]  Andras Varga Computation of Kronecker-like forms of a system pencil: applications, algorithms and software , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.

[43]  B. Anderson,et al.  Linear Optimal Control , 1971 .

[44]  Judith Gardiner,et al.  A generalization of the matrix sign function solution for algebraic Riccati equations , 1985, 1985 24th IEEE Conference on Decision and Control.

[45]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[46]  Mihail M. Konstantinov,et al.  Computational methods for linear control systems , 1991 .

[47]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[48]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[49]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[50]  G. Kunert Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes , 1998 .

[51]  Harald K. Wimmer,et al.  On the algebraic Riccati equation , 1976, Bulletin of the Australian Mathematical Society.

[52]  Vladimir B. Larin,et al.  Construction of square root factor for solution of the Lyapunov matrix equation , 1993 .

[53]  R. Y. Chiang,et al.  Model Reduction for Robust Control: A Schur Relative-Error Method , 1988, 1988 American Control Conference.

[54]  P. Lancaster,et al.  The Algebraic Riccati Equation , 1995 .

[55]  Paul Van Dooren,et al.  Computation of structural invariants of generalized state-space systems , 1994, Autom..

[56]  N. Higham Newton's method for the matrix square root , 1986 .

[57]  Peter Benner,et al.  An exact line search method for solving generalized continuous-time algebraic Riccati equations , 1998, IEEE Trans. Autom. Control..

[58]  Vasile Sima,et al.  Algorithms for Linear-Quadratic Optimization , 2021 .

[59]  Michael Schreiber,et al.  Critical Behavior in the Two‐Dimensional Anderson Model of Localization with Random Hopping , 1998 .

[60]  E. Davison,et al.  The numerical solution of A'Q+QA =-C , 1968 .