What is known about unit cubes
暂无分享,去创建一个
[1] H. Minkowski,et al. Geometrie der Zahlen , 1896 .
[2] O. Keller,et al. Über die lückenlose Erfüllung des Raumes mit Würfeln. , 1930 .
[3] R. Paley. On Orthogonal Matrices , 1933 .
[4] Ph. Furtwängler,et al. Über Gitter konstanter Dichte , 1936 .
[5] Ein Satz über die lückenlose Erfüllung des 5- und 6-dimensionalen Raumes mit Würfeln. , 1937 .
[6] Einlagerung des regulären n-Simplex in den n-dimensionalen Würfel , 1939 .
[7] O. Perron,et al. Modulartige lückenlose Ausfüllung desRn mit kongruenten Würfeln. I , 1940 .
[8] O. Perron,et al. Über lückenlose Ausfüllung desn-dimensionalen Raumes durch kongruente Würfel , 1940 .
[9] Oskar Perron. Modulartige lückenlose Ausfüllung desRn mit kongruenten Würfeln. II , 1940 .
[10] O. Perron,et al. Über lückenlose Ausfüllung desn-dimensionalen Raumes durch kongruente Würfel. II , 1940 .
[11] Georg Hajós,et al. Über einfache und mehrfache Bedeckung desn-dimensionalen Raumes mit einem Würfelgitter , 1942 .
[12] J. Williamson,et al. Determinants whose Elements are 0 and 1 , 1946 .
[13] Einfuhrung in die Determinantentheorie: einschliesslich der Fredholmschen Determinanten , 1948 .
[14] E. Gilbert. A comparison of signalling alphabets , 1952 .
[15] K. Leichtweiss,et al. Über die affine Exzentrizität konvexer Körper , 1959 .
[16] L. Danzer,et al. Über zwei Probleme bezüglich konvexer Körper von P. Erdös und von V. L. Klee , 1962 .
[17] Some near-sphericity results , 1963 .
[18] H. Ehlich,et al. Determinantenabschätzung für binäre Matrizen mitn≡3 mod 4 , 1964 .
[19] M. Wojtas,et al. On Hadamard's inequality for the determinants of order non-divisible by 4 , 1964 .
[20] H. Ehlich,et al. Determinantenabschätzungen für binäre Matrizen , 1964 .
[21] L. Rédei,et al. Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós , 1965 .
[22] G. F. Clements,et al. A sequence of (±1)-determinants with large values , 1965 .
[23] Some Designs for Maximal (+1, -1)-Determinant of Order n ≡2 (mod 4) , 1966 .
[24] C. H. Yang. A construction for maximal $\left( { + 1, - 1} \right)$-matrix of order $54$ , 1966 .
[25] C. H. Yang. Some designs for maximal (+1,-1)-determinant of order ≡2(4) , 1966 .
[26] Peter Gruber,et al. Zur Charakterisierung konvexer Körper. Über einen Satz von Rogers und Shephard. II , 1969 .
[27] Lower Bounds for Maximal $(0,1)$-Determinants , 1970 .
[28] Sherman K. Stein. A symmetric star body that tiles but not as a lattice , 1972 .
[29] H. Hadwiger,et al. Gitterperiodische Punktmengen und Isoperimetrie , 1972 .
[30] J. Brenner,et al. The Hadamard Maximum Determinant Problem , 1972 .
[31] P. Delsarte. Bounds for unrestricted codes, by linear programming , 1972 .
[32] J. Brenner. The Hadamard Maximum Determinant Problem , 1972 .
[33] G. C. Shephard. Combinatorial Properties of Associated Zonotopes , 1974, Canadian Journal of Mathematics.
[34] C. Borell. Convex set functions ind-space , 1975 .
[35] P. Mani,et al. Almost ellipsoidal sections and projections of convex bodies , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[36] E. Lieb,et al. Best Constants in Young's Inequality, Its Converse, and Its Generalization to More than Three Functions , 1976 .
[37] Patrick Scott Mara,et al. Triangulations for the Cube , 1976, J. Comb. Theory A.
[38] Robert J. McEliece,et al. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.
[39] N. Sloane. Error-Correcting Codes and Invariant Theory: New Applications of a Nineteenth-Century Technique , 1977 .
[40] M. Kanter,et al. Unimodality and dominance for symmetric random vectors , 1977 .
[41] W. Thurston. The geometry and topology of 3-manifolds , 1979 .
[42] Raphael M. Robinson,et al. Multiple tilings ofn-dimensional space by unit cubes , 1979 .
[43] D. Hensley,et al. Slicing the cube in ⁿ and probability (bounds for the measure of a central cube slice in ⁿ by probability methods) , 1979 .
[44] J. Vaaler. A geometric inequality with applications to linear forms , 1979 .
[45] D. Hensley. Slicing convex bodies—bounds for slice area in terms of the body’s covariance , 1980 .
[46] Uffe Haagerup,et al. Simplices of maximal volume in hyperbolicn-space , 1981 .
[47] S. Szabó. On mosaics consisting of multidimensional crosses , 1981 .
[48] Richard W. Cottle,et al. Minimal triangulation of the 4-cube , 1982, Discret. Math..
[49] John F. Sallee,et al. A note on minimal triangulations of an n-cube , 1973, Discret. Appl. Math..
[50] S. Szabó. Multiple tilings by cubes with no shared faces , 1982 .
[51] Jacobus H. van Lint,et al. Introduction to Coding Theory , 1982 .
[52] John F. Sallee. A triangulation of the n-cube , 1982, Discret. Math..
[53] Sergeĭ Sergeevich Ryshkov. The geometry of positive quadratic forms , 1983 .
[54] Mark Broadie,et al. A note on triangulating the 5-cube , 1984, Discret. Math..
[55] P. McMullen. Volumes of Projections of unit Cubes , 1984 .
[56] John F. Sallee. The Middle-Cut Triangulations of the n-Cube , 1984 .
[57] S. Agaian. Hadamard Matrices and Their Applications , 1985 .
[58] Carl W. Lee. TRIANGULATING THE d‐CUBE , 1985 .
[59] K. Ball. Cube slicing in ⁿ , 1986 .
[60] S. Szabó. A reduction of Keller's conjecture , 1986 .
[61] K. Ball. Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .
[62] J. Sanders,et al. The Stanley decomposition of the harmonic oscillator , 1988 .
[63] K. Ball. Volumes of sections of cubes and related problems , 1989 .
[64] M. Yamada. Some new series of Hadamard matrices , 1989, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[65] K. Corrádi,et al. A combinatorial approach for Keller's conjecture , 1990 .
[66] Mark Haiman,et al. A simple and relatively efficient triangulation of then-cube , 1991, Discret. Comput. Geom..
[67] Jeffrey C. Lagarias,et al. Keller’s cube-tiling conjecture is false in high dimensions , 1992 .
[68] Martin E. Dyer,et al. Volumes Spanned by Random Points in the Hypercube , 1992, Random Struct. Algorithms.
[69] Rolf Schneider,et al. Random projections of regular simplices , 1992, Discret. Comput. Geom..
[70] Michael R. Anderson,et al. A triangulation of the 6-cube with 308 simplices , 1993, Discret. Math..
[71] Robert B. Hughes. Minimum-cardinality triangulations of the d-cube for d=5 and d=6 , 1993, Discret. Math..
[72] Cube Tilings as Contributions of Algebra to Geometry , 1993 .
[73] Robert B. Hughes,et al. Lower bounds on cube simplexity , 1994, Discret. Math..
[74] Jeffrey C. Lagarias,et al. Cube-Tilings of Rn and Nonlinear Codes , 1994, Discret. Comput. Geom..
[75] P. Shor,et al. Cube-tilings of ℝn and nonlinear codesand nonlinear codes , 1994 .
[76] Peter Gritzmann,et al. Largest j-Simplices in n-Polytopes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.
[77] Peter Gritzmann,et al. Largestj-simplices inn-polytopes , 1995, Discret. Comput. Geom..
[78] Ikuo Satake. Automorphisms of the Extended Affine Root System and Modular Property for the Flat Theta Invariants , 1995 .
[79] E. Szemerédi,et al. On the probability that a random ±1-matrix is singular , 1995 .
[80] Michael R. Anderson,et al. Simplexity of the cube , 1996, Discret. Math..
[81] Chuanming Zong,et al. Strange Phenomena in Convex and Discrete Geometry , 1996 .
[82] Victor Klee,et al. Largest j-simplices in d-cubes: Some relatives of the hadamard maximum determinant problem , 1996 .
[83] Louis J. Billera,et al. All 0–1 polytopes are traveling salesman polytopes , 1996, Comb..
[84] Michael G. Neubauer,et al. Maximalj-Simplices in the Reald-Dimensional Unit Cube , 1997, J. Comb. Theory, Ser. A.
[85] Günter M. Ziegler,et al. Extremal Properties of 0/1-Polytopes , 1997, Discret. Comput. Geom..
[86] K. Ball. An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .
[87] K. Ball. An Elementary Introduction to Modern Convex Geometry , 1997 .
[88] Michael G. Neubauer,et al. The maximum determinant of ± 1 matrices , 1997 .
[89] Mihail N. Kolountzakis. Lattice Tilings by Cubes: Whole, Notched and Extended , 1998, Electron. J. Comb..
[90] Martin Aigner,et al. Proofs from THE BOOK , 1998 .
[91] J. K. Böröczky,et al. Random projections of regular polytopes , 1999 .
[92] L. Dalla,et al. The Blocking Numbers of Convex Bodies , 2000, Discret. Comput. Geom..
[93] Oswin Aichholzer,et al. Extremal Properties of 0/1-Polytopes of Dimension 5 , 2000 .
[94] Jesús A. De Loera,et al. Minimal Simplicial Dissections and Triangulations of Convex 3-Polytopes , 2000, Discret. Comput. Geom..
[95] Günter M. Ziegler,et al. Combinatorics of Polytopes - Preface , 2000, Eur. J. Comb..
[96] Mikhail I. Ostrovskii,et al. Minimal-Volume Shadows of Cubes , 2000 .
[97] G. Ziegler. Lectures on 0/1-Polytopes , 1999, math/9909177.
[98] Günter Rote,et al. Upper Bounds on the Maximal Number of Facets of 0/1-Polytopes , 2000, Eur. J. Comb..
[99] Warren D. Smith. A Lower Bound for the Simplexity of then-Cube via Hyperbolic Volumes , 2000, Eur. J. Comb..
[100] Y. Lonke. On Random Sections of the Cube , 2000, Discret. Comput. Geom..
[101] Attila Pór,et al. On 0-1 Polytopes with Many Facets , 2001 .
[102] M. Aigner,et al. Proofs from "The Book" , 2001 .
[103] Mackey. A Cube Tiling of Dimension Eight with No Facesharing , 2002 .
[104] Francisco Santos,et al. Asymptotically Efficient Triangulations of the d-Cube , 2002, CCCG.
[105] M. Behbahani. On orthogonal matrices , 2004 .
[106] Carl W. Lee,et al. Subdivisions and Triangulationsof Polytopes , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[107] BORSUK ' S THEOREM AND THE NUMBER OF FACETS OF CENTRALLY SYMMETRIC POLYTOPES , 2005 .
[108] Chuanming Zong,et al. The Cube-A Window to Convex and Discrete Geometry , 2006 .