What is known about unit cubes

Unit cubes, from any point of view, are among the simplest and the most important objects in n-dimensional Euclidean space. In fact, as one will see from this survey, they are not simple at all. On the one hand, the known results about them have been achieved by employing complicated machineries from Number Theory, Group Theory, Probability Theory, Matrix Theory, Hyperbolic Geometry, Combinatorics, etc.; on the other hand, the answers for many basic problems about them are still missing. In addition, the geometry of unit cubes does serve as a meeting point for several applied subjects such as Design Theory, Coding Theory, etc. The purpose of this article is to figure out what is known about the unit cubes and what do we want to know about them.

[1]  H. Minkowski,et al.  Geometrie der Zahlen , 1896 .

[2]  O. Keller,et al.  Über die lückenlose Erfüllung des Raumes mit Würfeln. , 1930 .

[3]  R. Paley On Orthogonal Matrices , 1933 .

[4]  Ph. Furtwängler,et al.  Über Gitter konstanter Dichte , 1936 .

[5]  Ein Satz über die lückenlose Erfüllung des 5- und 6-dimensionalen Raumes mit Würfeln. , 1937 .

[6]  Einlagerung des regulären n-Simplex in den n-dimensionalen Würfel , 1939 .

[7]  O. Perron,et al.  Modulartige lückenlose Ausfüllung desRn mit kongruenten Würfeln. I , 1940 .

[8]  O. Perron,et al.  Über lückenlose Ausfüllung desn-dimensionalen Raumes durch kongruente Würfel , 1940 .

[9]  Oskar Perron Modulartige lückenlose Ausfüllung desRn mit kongruenten Würfeln. II , 1940 .

[10]  O. Perron,et al.  Über lückenlose Ausfüllung desn-dimensionalen Raumes durch kongruente Würfel. II , 1940 .

[11]  Georg Hajós,et al.  Über einfache und mehrfache Bedeckung desn-dimensionalen Raumes mit einem Würfelgitter , 1942 .

[12]  J. Williamson,et al.  Determinants whose Elements are 0 and 1 , 1946 .

[13]  Einfuhrung in die Determinantentheorie: einschliesslich der Fredholmschen Determinanten , 1948 .

[14]  E. Gilbert A comparison of signalling alphabets , 1952 .

[15]  K. Leichtweiss,et al.  Über die affine Exzentrizität konvexer Körper , 1959 .

[16]  L. Danzer,et al.  Über zwei Probleme bezüglich konvexer Körper von P. Erdös und von V. L. Klee , 1962 .

[17]  Some near-sphericity results , 1963 .

[18]  H. Ehlich,et al.  Determinantenabschätzung für binäre Matrizen mitn≡3 mod 4 , 1964 .

[19]  M. Wojtas,et al.  On Hadamard's inequality for the determinants of order non-divisible by 4 , 1964 .

[20]  H. Ehlich,et al.  Determinantenabschätzungen für binäre Matrizen , 1964 .

[21]  L. Rédei,et al.  Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós , 1965 .

[22]  G. F. Clements,et al.  A sequence of (±1)-determinants with large values , 1965 .

[23]  Some Designs for Maximal (+1, -1)-Determinant of Order n ≡2 (mod 4) , 1966 .

[24]  C. H. Yang A construction for maximal $\left( { + 1, - 1} \right)$-matrix of order $54$ , 1966 .

[25]  C. H. Yang Some designs for maximal (+1,-1)-determinant of order ≡2(4) , 1966 .

[26]  Peter Gruber,et al.  Zur Charakterisierung konvexer Körper. Über einen Satz von Rogers und Shephard. II , 1969 .

[27]  Lower Bounds for Maximal $(0,1)$-Determinants , 1970 .

[28]  Sherman K. Stein A symmetric star body that tiles but not as a lattice , 1972 .

[29]  H. Hadwiger,et al.  Gitterperiodische Punktmengen und Isoperimetrie , 1972 .

[30]  J. Brenner,et al.  The Hadamard Maximum Determinant Problem , 1972 .

[31]  P. Delsarte Bounds for unrestricted codes, by linear programming , 1972 .

[32]  J. Brenner The Hadamard Maximum Determinant Problem , 1972 .

[33]  G. C. Shephard Combinatorial Properties of Associated Zonotopes , 1974, Canadian Journal of Mathematics.

[34]  C. Borell Convex set functions ind-space , 1975 .

[35]  P. Mani,et al.  Almost ellipsoidal sections and projections of convex bodies , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  E. Lieb,et al.  Best Constants in Young's Inequality, Its Converse, and Its Generalization to More than Three Functions , 1976 .

[37]  Patrick Scott Mara,et al.  Triangulations for the Cube , 1976, J. Comb. Theory A.

[38]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[39]  N. Sloane Error-Correcting Codes and Invariant Theory: New Applications of a Nineteenth-Century Technique , 1977 .

[40]  M. Kanter,et al.  Unimodality and dominance for symmetric random vectors , 1977 .

[41]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[42]  Raphael M. Robinson,et al.  Multiple tilings ofn-dimensional space by unit cubes , 1979 .

[43]  D. Hensley,et al.  Slicing the cube in ⁿ and probability (bounds for the measure of a central cube slice in ⁿ by probability methods) , 1979 .

[44]  J. Vaaler A geometric inequality with applications to linear forms , 1979 .

[45]  D. Hensley Slicing convex bodies—bounds for slice area in terms of the body’s covariance , 1980 .

[46]  Uffe Haagerup,et al.  Simplices of maximal volume in hyperbolicn-space , 1981 .

[47]  S. Szabó On mosaics consisting of multidimensional crosses , 1981 .

[48]  Richard W. Cottle,et al.  Minimal triangulation of the 4-cube , 1982, Discret. Math..

[49]  John F. Sallee,et al.  A note on minimal triangulations of an n-cube , 1973, Discret. Appl. Math..

[50]  S. Szabó Multiple tilings by cubes with no shared faces , 1982 .

[51]  Jacobus H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[52]  John F. Sallee A triangulation of the n-cube , 1982, Discret. Math..

[53]  Sergeĭ Sergeevich Ryshkov The geometry of positive quadratic forms , 1983 .

[54]  Mark Broadie,et al.  A note on triangulating the 5-cube , 1984, Discret. Math..

[55]  P. McMullen Volumes of Projections of unit Cubes , 1984 .

[56]  John F. Sallee The Middle-Cut Triangulations of the n-Cube , 1984 .

[57]  S. Agaian Hadamard Matrices and Their Applications , 1985 .

[58]  Carl W. Lee TRIANGULATING THE d‐CUBE , 1985 .

[59]  K. Ball Cube slicing in ⁿ , 1986 .

[60]  S. Szabó A reduction of Keller's conjecture , 1986 .

[61]  K. Ball Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .

[62]  J. Sanders,et al.  The Stanley decomposition of the harmonic oscillator , 1988 .

[63]  K. Ball Volumes of sections of cubes and related problems , 1989 .

[64]  M. Yamada Some new series of Hadamard matrices , 1989, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[65]  K. Corrádi,et al.  A combinatorial approach for Keller's conjecture , 1990 .

[66]  Mark Haiman,et al.  A simple and relatively efficient triangulation of then-cube , 1991, Discret. Comput. Geom..

[67]  Jeffrey C. Lagarias,et al.  Keller’s cube-tiling conjecture is false in high dimensions , 1992 .

[68]  Martin E. Dyer,et al.  Volumes Spanned by Random Points in the Hypercube , 1992, Random Struct. Algorithms.

[69]  Rolf Schneider,et al.  Random projections of regular simplices , 1992, Discret. Comput. Geom..

[70]  Michael R. Anderson,et al.  A triangulation of the 6-cube with 308 simplices , 1993, Discret. Math..

[71]  Robert B. Hughes Minimum-cardinality triangulations of the d-cube for d=5 and d=6 , 1993, Discret. Math..

[72]  Cube Tilings as Contributions of Algebra to Geometry , 1993 .

[73]  Robert B. Hughes,et al.  Lower bounds on cube simplexity , 1994, Discret. Math..

[74]  Jeffrey C. Lagarias,et al.  Cube-Tilings of Rn and Nonlinear Codes , 1994, Discret. Comput. Geom..

[75]  P. Shor,et al.  Cube-tilings of ℝn and nonlinear codesand nonlinear codes , 1994 .

[76]  Peter Gritzmann,et al.  Largest j-Simplices in n-Polytopes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[77]  Peter Gritzmann,et al.  Largestj-simplices inn-polytopes , 1995, Discret. Comput. Geom..

[78]  Ikuo Satake Automorphisms of the Extended Affine Root System and Modular Property for the Flat Theta Invariants , 1995 .

[79]  E. Szemerédi,et al.  On the probability that a random ±1-matrix is singular , 1995 .

[80]  Michael R. Anderson,et al.  Simplexity of the cube , 1996, Discret. Math..

[81]  Chuanming Zong,et al.  Strange Phenomena in Convex and Discrete Geometry , 1996 .

[82]  Victor Klee,et al.  Largest j-simplices in d-cubes: Some relatives of the hadamard maximum determinant problem , 1996 .

[83]  Louis J. Billera,et al.  All 0–1 polytopes are traveling salesman polytopes , 1996, Comb..

[84]  Michael G. Neubauer,et al.  Maximalj-Simplices in the Reald-Dimensional Unit Cube , 1997, J. Comb. Theory, Ser. A.

[85]  Günter M. Ziegler,et al.  Extremal Properties of 0/1-Polytopes , 1997, Discret. Comput. Geom..

[86]  K. Ball An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .

[87]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[88]  Michael G. Neubauer,et al.  The maximum determinant of ± 1 matrices , 1997 .

[89]  Mihail N. Kolountzakis Lattice Tilings by Cubes: Whole, Notched and Extended , 1998, Electron. J. Comb..

[90]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[91]  J. K. Böröczky,et al.  Random projections of regular polytopes , 1999 .

[92]  L. Dalla,et al.  The Blocking Numbers of Convex Bodies , 2000, Discret. Comput. Geom..

[93]  Oswin Aichholzer,et al.  Extremal Properties of 0/1-Polytopes of Dimension 5 , 2000 .

[94]  Jesús A. De Loera,et al.  Minimal Simplicial Dissections and Triangulations of Convex 3-Polytopes , 2000, Discret. Comput. Geom..

[95]  Günter M. Ziegler,et al.  Combinatorics of Polytopes - Preface , 2000, Eur. J. Comb..

[96]  Mikhail I. Ostrovskii,et al.  Minimal-Volume Shadows of Cubes , 2000 .

[97]  G. Ziegler Lectures on 0/1-Polytopes , 1999, math/9909177.

[98]  Günter Rote,et al.  Upper Bounds on the Maximal Number of Facets of 0/1-Polytopes , 2000, Eur. J. Comb..

[99]  Warren D. Smith A Lower Bound for the Simplexity of then-Cube via Hyperbolic Volumes , 2000, Eur. J. Comb..

[100]  Y. Lonke On Random Sections of the Cube , 2000, Discret. Comput. Geom..

[101]  Attila Pór,et al.  On 0-1 Polytopes with Many Facets , 2001 .

[102]  M. Aigner,et al.  Proofs from "The Book" , 2001 .

[103]  Mackey A Cube Tiling of Dimension Eight with No Facesharing , 2002 .

[104]  Francisco Santos,et al.  Asymptotically Efficient Triangulations of the d-Cube , 2002, CCCG.

[105]  M. Behbahani On orthogonal matrices , 2004 .

[106]  Carl W. Lee,et al.  Subdivisions and Triangulationsof Polytopes , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[107]  BORSUK ' S THEOREM AND THE NUMBER OF FACETS OF CENTRALLY SYMMETRIC POLYTOPES , 2005 .

[108]  Chuanming Zong,et al.  The Cube-A Window to Convex and Discrete Geometry , 2006 .