Sparse gaussian processes for large-scale machine learning
暂无分享,去创建一个
[1] Luís Torgo,et al. Clustered Partial Linear Regression , 2000, Machine Learning.
[2] M. Lázaro-Gredilla. Sparse Spectral Sampling Gaussian Processes , 2007 .
[3] Volker Tresp,et al. A Bayesian Committee Machine , 2000, Neural Computation.
[4] Malte Kuß,et al. Gaussian process models for robust regression, classification, and reinforcement learning , 2006 .
[5] G. Micula,et al. Numerical Treatment of the Integral Equations , 1999 .
[6] George Cybenko,et al. Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..
[7] D. Harville. Matrix Algebra From a Statistician's Perspective , 1998 .
[8] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[9] Yuan Qi,et al. Bayesian spectrum estimation of unevenly sampled nonstationary data , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[10] Matthias W. Seeger,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[11] Andries Petrus Engelbrecht,et al. Evolving model trees for mining data sets with continuous-valued classes , 2008, Expert Syst. Appl..
[12] David Barber,et al. Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[13] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[14] Gunnar Rätsch,et al. Soft Margins for AdaBoost , 2001, Machine Learning.
[15] N. L. Johnson,et al. Multivariate Analysis , 1958, Nature.
[16] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[17] Tao Chen,et al. Bagging for Gaussian process regression , 2009, Neurocomputing.
[18] Kurt Hornik,et al. Multilayer feedforward networks are universal approximators , 1989, Neural Networks.
[19] G. Matheron. The intrinsic random functions and their applications , 1973, Advances in Applied Probability.
[20] Geoffrey E. Hinton,et al. Evaluation of Gaussian processes and other methods for non-linear regression , 1997 .
[21] Sholom M. Weiss,et al. Rule-based Machine Learning Methods for Functional Prediction , 1995, J. Artif. Intell. Res..
[22] Radford M. Neal. Bayesian Learning via Stochastic Dynamics , 1992, NIPS.
[23] M. Opper. Sparse Online Gaussian Processes , 2008 .
[24] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[25] H. Luetkepohl. The Handbook of Matrices , 1996 .
[26] P. K. Chaturvedi,et al. Communication Systems , 2002, IFIP — The International Federation for Information Processing.
[27] A. O'Hagan,et al. Curve Fitting and Optimal Design for Prediction , 1978 .
[28] Carl E. Rasmussen,et al. Assessing Approximate Inference for Binary Gaussian Process Classification , 2005, J. Mach. Learn. Res..
[29] Radford M. Neal. Bayesian training of backpropagation networks by the hybrid Monte-Carlo method , 1992 .
[30] Carl E. Rasmussen,et al. In Advances in Neural Information Processing Systems , 2011 .
[31] Carl E. Rasmussen,et al. Assessing Approximations for Gaussian Process Classification , 2005, NIPS.
[32] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[33] Neil D. Lawrence,et al. Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.
[34] Benjamin Recht,et al. Random Features for Large-Scale Kernel Machines , 2007, NIPS.
[35] Neil D. Lawrence,et al. Sparse Convolved Gaussian Processes for Multi-output Regression , 2008, NIPS.
[36] B. Silverman,et al. Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .
[37] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[38] Sean B. Holden,et al. The Generalized FITC Approximation , 2007, NIPS.
[39] Walter L. Smith. Probability and Statistics , 1959, Nature.
[40] Tom Minka,et al. Expectation Propagation for approximate Bayesian inference , 2001, UAI.
[41] G. L. Bretthorst. Nonuniform sampling: Bandwidth and aliasing , 2001 .
[42] Edwin V. Bonilla,et al. Multi-task Gaussian Process Prediction , 2007, NIPS.
[43] Norbert Wiener,et al. Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .
[44] George M. Siouris,et al. Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[45] Geoffrey E. Hinton,et al. Bayesian Learning for Neural Networks , 1995 .
[46] Alexander J. Smola,et al. Sparse Greedy Gaussian Process Regression , 2000, NIPS.
[47] Johannes Fürnkranz,et al. Pairwise Classification as an Ensemble Technique , 2002, ECML.
[48] Andrew Y. Ng,et al. Fast Gaussian Process Regression using KD-Trees , 2005, NIPS.
[49] William H. Press,et al. Numerical recipes in C , 2002 .
[50] Christopher K. I. Williams. Computing with Infinite Networks , 1996, NIPS.
[51] Kurt Hornik,et al. Some new results on neural network approximation , 1993, Neural Networks.
[52] Neil D. Lawrence,et al. Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.
[53] Aníbal R. Figueiras-Vidal,et al. Inter-domain Gaussian Processes for Sparse Inference using Inducing Features , 2009, NIPS.
[54] Larry S. Davis,et al. Efficient Kernel Machines Using the Improved Fast Gauss Transform , 2004, NIPS.
[55] Edward Lloyd Snelson,et al. Flexible and efficient Gaussian process models for machine learning , 2007 .
[56] Bernhard Schölkopf,et al. Sparse multiscale gaussian process regression , 2008, ICML '08.
[57] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[58] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.