Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry

We study a space-based gravity gradiometer based on cold atom interferometry and its potential for the Earth's gravitational field mapping. The instrument architecture has been proposed in [Carraz et al., Microgravity Science and Technology 26, 139 (2014)] and enables high-sensitivity measurements of gravity gradients by using atom interferometers in a differential accelerometer configuration. We present the design of the instrument including its subsystems and analyze the mission scenario, for which we derive the expected instrument performances, the requirements on the sensor and its key subsystems, and the expected impact on the recovery of the Earth gravity field.

[1]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[2]  S. Abend,et al.  Self-alignment of a compact large-area atomic Sagnac interferometer , 2012 .

[3]  A. Landragin,et al.  Interleaved atom interferometry for high-sensitivity inertial measurements , 2018, Science Advances.

[4]  C. Xue,et al.  Precision measurement of the Newtonian gravitational constant , 2020, National science review.

[5]  Robert J. Thompson,et al.  NASA’s Cold Atom Lab (CAL): system development and ground test status , 2018, npj Microgravity.

[6]  A. Landragin,et al.  Differential atom interferometry with $^{87}$Rb and $^{85}$Rb for testing the UFF in STE-QUEST , 2013, 1312.5963.

[7]  H. Bock,et al.  GOCE: precise orbit determination for the entire mission , 2014, Journal of Geodesy.

[8]  Franck Pereira Dos Santos,et al.  Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery , 2017 .

[9]  Nico Sneeuw,et al.  The polar gap , 1997 .

[10]  M. Kasevich,et al.  Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle. , 2017, Physical review letters.

[11]  A. Bertoldi,et al.  Bose–Einstein condensate array in a malleable optical trap formed in a traveling wave cavity , 2018, Quantum Science and Technology.

[12]  L. Pinard,et al.  Mechanical loss in state-of-the-art amorphous optical coatings , 2015, 1511.06172.

[13]  M. Kasevich,et al.  Matter wave lensing to picokelvin temperatures. , 2014, Physical review letters.

[14]  N. Gaaloul,et al.  Optimal control of the transport of Bose-Einstein condensates with atom chips , 2018, Scientific Reports.

[15]  C. Braxmaier,et al.  A compact and robust diode laser system for atom interferometry on a sounding rocket , 2016, 1606.00271.

[16]  P. Silvestrin,et al.  A Spaceborne Gravity Gradiometer Concept Based on Cold Atom Interferometers for Measuring Earth’s Gravity Field , 2014, 1406.0765.

[17]  S. Abend,et al.  Atom-chip Gravimeter with Bose-Einstein Condensates , 2018 .

[18]  Chu,et al.  Theoretical analysis of velocity-selective Raman transitions. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[19]  A. Landragin,et al.  The influence of transverse motion within an atomic gravimeter , 2011 .

[20]  M. Kasevich,et al.  Light-pulse atom interferometry , 2008, 0806.3261.

[21]  S. Chiow,et al.  A high-performance magnetic shield with large length-to-diameter ratio. , 2012, The Review of scientific instruments.

[22]  F. Perosanz,et al.  The European Gravity Field and Steady-State Ocean Circulation Explorer Satellite Mission Its Impact on Geophysics , 2003 .

[23]  M A Kasevich,et al.  Zero-dead-time operation of interleaved atomic clocks. , 2013, Physical review letters.

[24]  Holger Ahlers,et al.  Interferometry with Bose-Einstein condensates in microgravity , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[25]  J. Hough,et al.  Prototype optical bench instrument in the interferometer for the LISA–Pathfinder space mission , 2006 .

[26]  N. Gaaloul,et al.  Fast manipulation of Bose-Einstein condensates with an atom chip , 2017, 1712.04820.

[27]  Shau-Yu Lan,et al.  Influence of the Coriolis force in atom interferometry. , 2011, Physical review letters.

[28]  A. Aspect,et al.  All-optical runaway evaporation to Bose-Einstein condensation , 2009, 0903.2745.

[29]  W. Schleich,et al.  Double Bragg Interferometry. , 2016, Physical review letters.

[30]  A. Landragin,et al.  Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique. , 2009, Physical review letters.

[31]  M. Kasevich,et al.  Measurement of the Earth's Gravity Gradient with an Atom Interferometer-Based Gravity Gradiometer , 1998 .

[32]  N. Lundblad,et al.  High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals. , 2003, Optics express.

[33]  Emanuele Rocco,et al.  Fluorescence detection at the atom shot noise limit for atom interferometry , 2014, 1404.7117.

[34]  Claus Lämmerzahl,et al.  Twin-lattice atom interferometry , 2019, Nature Communications.

[35]  L. P. Pellinen Physical Geodesy , 1972 .

[36]  R. Grimm,et al.  Laser cooling to quantum degeneracy. , 2013, Physical review letters.

[37]  Dallin S. Durfee,et al.  Output Coupler for Bose-Einstein Condensed Atoms , 1997 .

[38]  M. Popp,et al.  A high-flux BEC source for mobile atom interferometers , 2015, 1501.00403.

[39]  C. cohen-tannoudji,et al.  The Feynman path integral approach to atomic interferometry: A tutorial , 1994 .

[40]  O. Carraz,et al.  Narrow linewidth single laser source system for onboard atom interferometry , 2014, 1407.4684.

[41]  M. Kasevich,et al.  Enhanced atom interferometer readout through the application of phase shear. , 2013, Physical review letters.

[42]  T. Fukuhara,et al.  Bose-Einstein condensation of an ytterbium isotope , 2007, 0709.3068.

[43]  A. Prata,et al.  Algorithm for computation of Zernike polynomials expansion coefficients. , 1989, Applied optics.

[44]  P. Jetzer,et al.  STE-QUEST—test of the universality of free fall using cold atom interferometry , 2013, 1312.5980.

[45]  M. Saccoccio,et al.  Design of the cold atom PHARAO space clock and initial test results , 2006 .

[46]  M. Kasevich,et al.  Sensitive absolute-gravity gradiometry using atom interferometry , 2001, physics/0105088.

[47]  C. Bordé,et al.  Quantum Theory of Atom-Wave Beam Splitters and Application to Multidimensional Atomic Gravito-Inertial Sensors , 2004 .

[48]  F. Sorrentino,et al.  Precision measurement of the Newtonian gravitational constant using cold atoms , 2014, Nature.

[49]  X. Chen,et al.  Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer. , 2015, Physical review letters.

[50]  W. Chaibi,et al.  Characterization and limits of a cold-atom Sagnac interferometer , 2009, 0907.2580.

[51]  C. Schwob,et al.  Combination of BLOCH oscillations with a Ramsey-Bordé interferometer: new determination of the fine structure constant. , 2008, Physical review letters.

[52]  A. Landragin,et al.  Continuous Cold-Atom Inertial Sensor with 1  nrad/sec Rotation Stability. , 2016, Physical review letters.

[53]  A. Imanaliev,et al.  Improving the accuracy of atom interferometers with ultracold sources , 2018, New Journal of Physics.

[54]  Achim Peters,et al.  Mobile quantum gravity sensor with unprecedented stability , 2015, 1512.05660.

[55]  Philippe Bouyer,et al.  Influence of optical aberrations in an atomic gyroscope , 2005 .

[56]  Chu,et al.  Atomic interferometry using stimulated Raman transitions. , 1991, Physical review letters.

[57]  J. E. Debs,et al.  Precision atomic gravimeter based on Bragg diffraction , 2012, 1207.1595.

[58]  Ruizong Li,et al.  Expansion dynamics of a spherical Bose–Einstein condensate , 2018, Chinese Physics B.

[59]  M. Kasevich,et al.  Multiaxis inertial sensing with long-time point source atom interferometry. , 2013, Physical review letters.

[60]  Achim Peters,et al.  Space-borne Bose–Einstein condensation for precision interferometry , 2018, Nature.

[61]  D. Weiss,et al.  All-optical Bose-Einstein condensation using a compressible crossed dipole trap , 2005 .

[62]  M. Merzougui,et al.  Exploring gravity with the MIGA large scale atom interferometer , 2017, Scientific Reports.

[63]  P. Knudsen,et al.  A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model , 2011 .

[64]  M. Loupias,et al.  The VIRGO large mirrors: a challenge for low loss coatings , 2004 .

[65]  A. Clairon,et al.  Limits to the sensitivity of a low noise compact atomic gravimeter , 2008, 0801.1270.

[66]  B. Fuchs,et al.  Examination of the polished surface character of fused silica. , 1992, Applied optics.

[67]  Ritva Keski-Kuha,et al.  An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO) , 2010, 1009.2702.

[68]  P. Kevrekidis,et al.  Matter-wave bright solitons in spin-orbit coupled Bose-Einstein condensates. , 2012, Physical review letters.

[69]  W. Schleich,et al.  Atom-Chip Fountain Gravimeter. , 2016, Physical review letters.

[70]  Wolf-Dieter Schuh The Processing of Band-Limited Measurements; Filtering Techniques in the Least Squares Context and in the Presence of Data GAPS , 2003 .

[71]  C. Braxmaier,et al.  A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket. , 2016, The Review of scientific instruments.

[72]  Rolf König,et al.  EIGEN-6C4 - The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse , 2011 .

[73]  H. Kogelnik,et al.  Laser beams and resonators. , 1966, Applied optics.

[74]  J. Rudolph,et al.  Matter-wave optics with Bose-Einstein condensates in microgravity , 2016 .

[75]  Rune Floberghagen,et al.  VII: CLOSING SESSION: GOCE: ESA's First Earth Explorer Core Mission , 2003 .

[76]  Walter Fichter,et al.  LISA Pathfinder: mission and status , 2011 .

[77]  G. Tino,et al.  Canceling the Gravity Gradient Phase Shift in Atom Interferometry. , 2017, Physical review letters.

[78]  S. Abend,et al.  Atomic source selection in space-borne gravitational wave detection , 2018, New Journal of Physics.

[79]  M. Prevedelli,et al.  Phase shift in atom interferometers: Corrections for nonquadratic potentials and finite-duration laser pulses , 2018, Physical Review A.

[80]  A. Peters,et al.  First gravity measurements using the mobile atom interferometer GAIN , 2013 .

[81]  A. Landragin,et al.  Perturbations of the local gravity field due to mass distribution on precise measuring instruments: a numerical method applied to a cold atom gravimeter , 2011, 1105.2173.

[82]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[83]  W. Schleich,et al.  Composite-light-pulse technique for high-precision atom interferometry. , 2015, Physical review letters.

[84]  Albert Roura,et al.  Circumventing Heisenberg's Uncertainty Principle in Atom Interferometry Tests of the Equivalence Principle. , 2015, Physical review letters.

[85]  R. Pail,et al.  Alternative method for angular rate determination within the GOCE gradiometer processing , 2011 .

[86]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[87]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[88]  Torsten Mayer-Gürr,et al.  EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission , 2014 .

[89]  M. Prevedelli,et al.  Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G , 2006 .