THE CALCULATION OF FREE-ENERGY DIFFERENCES BY CONSTRAINED MOLECULAR-DYNAMICS SIMULATIONS

In this paper we set out to derive a relation between the constraint force and the derivative of the free energy for a system in which only the reaction coordinate is constrained. Our result differs from the expression by Mulders et al. [J. Chem. Phys. 104, 4869 (1996)] because we take into account the effect of the constraint on the sampled phase-space distribution. The method is illustrated with two prototypical numerical examples.

[1]  E. Bright Wilson,et al.  Book Reviews: Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra , 1955 .

[2]  D. Herschbach,et al.  Molecular Partition Functions in Terms of Local Properties , 1959 .

[3]  M. Fixman Classical statistical mechanics of constraints: a theorem and application to polymers. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A molecular dynamics calculation to confirm the incorrectness of the random‐walk distribution for describing the Kramers freely jointed bead–rod chain , 1976 .

[5]  Harold A. Scheraga,et al.  On the Use of Classical Statistical Mechanics in the Treatment of Polymer Chain Conformation , 1976 .

[6]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[7]  J. H. Weiner,et al.  Brownian dynamics study of a polymer chain of linked rigid bodies , 1979 .

[8]  E. Helfand,et al.  Flexible vs rigid constraints in statistical mechanics , 1979 .

[9]  Bernard F. Schutz,et al.  A First Course in General Relativity , 2022 .

[10]  Giovanni Ciccotti,et al.  Molecular dynamics simulation of rigid molecules , 1986 .

[11]  G. Ciccotti,et al.  Constrained reaction coordinate dynamics for the simulation of rare events , 1989 .

[12]  Wilfred F. van Gunsteren,et al.  Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications , 1989 .

[13]  D. Beveridge,et al.  Free energy via molecular simulation: applications to chemical and biomolecular systems. , 1989, Annual review of biophysics and biophysical chemistry.

[14]  G. Ciccotti,et al.  Activation energies by molecular dynamics with constraints , 1991 .

[15]  T. Straatsma,et al.  Multiconfiguration thermodynamic integration , 1991 .

[16]  Peter A. Kollman,et al.  The overlooked bond‐stretching contribution in free energy perturbation calculations , 1991 .

[17]  Martin Zacharias,et al.  Holonomic constraint contributions to free energy differences from thermodynamic integration molecular dynamics simulations , 1992 .

[18]  David A. Pearlman,et al.  Determining the contributions of constraints in free energy calculations: Development, characterization, and recommendations , 1993 .

[19]  Giovanni Ciccotti,et al.  Sampling of molecular conformations by molecular dynamics techniques , 1993 .

[20]  Jan Hermans,et al.  Change of bond length in free‐energy simulations: Algorithmic improvements, but when is it necessary? , 1994 .

[21]  Jonathan W. Essex,et al.  Generalized alteration of structure and parameters: A new method for free‐energy perturbations in systems containing flexible degrees of freedom , 1995, J. Comput. Chem..

[22]  H. Bekker,et al.  Force and virial of torsional‐angle‐dependent potentials , 1995, J. Comput. Chem..

[23]  Krzysztof Kuczera,et al.  One‐ and multidimensional conformational free energy simulations , 1996 .

[24]  P. Krüger,et al.  Free energy as the potential of mean constraint force , 1996 .

[25]  M. Karplus,et al.  The Jacobian factor in free energy simulations , 1996 .