Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy

Juvenile myoclonic epilepsy is the most common idiopathic generalized epilepsy, characterized by frequent myoclonic jerks, generalized tonic-clonic seizures and, less commonly, absences. Neuropsychological and, less consistently, anatomical studies have indicated frontal lobe dysfunction in the disease. Given its presumed thalamo–cortical basis, we investigated thalamo–cortical structural connectivity, as measured by diffusion tensor imaging, in a cohort of 28 participants with juvenile myoclonic epilepsy and detected changes in an anterior thalamo–cortical bundle compared with healthy control subjects. We then investigated task-modulated functional connectivity from the anterior thalamic region identified using functional magnetic resonance imaging in a task consistently shown to be impaired in this group, phonemic verbal fluency. We demonstrate an alteration in task-modulated connectivity in a region of frontal cortex directly connected to the thalamus via the same anatomical bundle, and overlapping with the supplementary motor area. Further, we show that the degree of abnormal connectivity is related to disease severity in those with active seizures. By integrating methods examining structural and effective interregional connectivity, these results provide convincing evidence for abnormalities in a specific thalamo–cortical circuit, with reduced structural and task-induced functional connectivity, which may underlie the functional abnormalities in this idiopathic epilepsy.

[1]  Abraham Z. Snyder,et al.  Maturing Thalamocortical Functional Connectivity Across Development , 2010, Front. Syst. Neurosci..

[2]  M. Allen,et al.  Clinical Application of Standardized Cognitive Assessment Using fMRI. II. Verbal Fluency , 2009, Behavioural neurology.

[3]  M. Allen,et al.  Clinical Application of Standardized Cognitive Assessment Using fMRI. I. Matrix Reasoning , 2009, Behavioural neurology.

[4]  S. Rombouts,et al.  Reduced resting-state brain activity in the "default network" in normal aging. , 2008, Cerebral cortex.

[5]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[6]  C. Marsden,et al.  What do the basal ganglia do? , 1998, The Lancet.

[7]  Frederick Andermann,et al.  Mechanisms, genetics, and pathogenesis of juvenile myoclonic epilepsy: review , 2005, Current opinion in neurology.

[8]  G J Barker,et al.  Focal structural changes and cognitive dysfunction in juvenile myoclonic epilepsy , 2011, Neurology.

[9]  G J Barker,et al.  Altered microstructural connectivity in juvenile myoclonic epilepsy , 2012, Neurology.

[10]  Mark S. Seidenberg,et al.  Thalamofrontal neurodevelopment in new-onset pediatric idiopathic generalized epilepsy , 2011, Neurology.

[11]  S L Free,et al.  Quantitative MRI in patients with idiopathic generalized epilepsy. Evidence of widespread cerebral structural changes. , 1997, Brain : a journal of neurology.

[12]  Stephen M. Smith,et al.  Crossing fibres in tract-based spatial statistics , 2010, NeuroImage.

[13]  M. Jenkinson Non-linear registration aka Spatial normalisation , 2007 .

[14]  Tianzi Jiang,et al.  Regional atrophy of the basal ganglia and thalamus in idiopathic generalized epilepsy , 2011, Journal of magnetic resonance imaging : JMRI.

[15]  A. Loonstra,et al.  COWAT Metanorms Across Age, Education, and Gender , 2001, Applied neuropsychology.

[16]  Simon S. Keller,et al.  Volume Estimation of the Thalamus Using Freesurfer and Stereology: Consistency between Methods , 2012, Neuroinformatics.

[17]  Boris C. Bernhardt,et al.  Thalamo–cortical network pathology in idiopathic generalized epilepsy: Insights from MRI-based morphometric correlation analysis , 2009, NeuroImage.

[18]  O. Gruber,et al.  Evaluation of cognition, structural, and functional MRI in juvenile myoclonic epilepsy , 2009, Epilepsia.

[19]  Derek K. Jones,et al.  The effect of filter size on VBM analyses of DT-MRI data , 2005, NeuroImage.

[20]  John R. Terry,et al.  Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Kátia Lin,et al.  Language- and praxis-induced jerks in patients with juvenile myoclonic epilepsy. , 2005, Epileptic disorders : international epilepsy journal with videotape.

[22]  Bruce Hermann,et al.  Thalamofrontal circuitry and executive dysfunction in recent‐onset juvenile myoclonic epilepsy , 2009, Epilepsia.

[23]  J. Gotman,et al.  fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. , 2004, Brain : a journal of neurology.

[24]  John S. Duncan,et al.  Clustering probabilistic tractograms using independent component analysis applied to the thalamus , 2011, NeuroImage.

[25]  H. Buchholz,et al.  Alteration of dopamine D2/D3 receptor binding in patients with juvenile myoclonic epilepsy , 2010, Epilepsia.

[26]  Gabriel Möddel,et al.  Microstructural and volumetric abnormalities of the putamen in juvenile myoclonic epilepsy , 2011, Epilepsia.

[27]  Alan Connelly,et al.  Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping , 2010, NeuroImage.

[28]  Sun I. Kim,et al.  Regional grey matter abnormalities in juvenile myoclonic epilepsy: A voxel-based morphometry study , 2007, NeuroImage.

[29]  Bruno Bergamasco,et al.  Clinical features, EEG findings and diagnostic pitfalls in juvenile myoclonic epilepsy: a series of 63 patients , 2001, Journal of the Neurological Sciences.

[30]  Karl J. Friston,et al.  EEG–fMRI of idiopathic and secondarily generalized epilepsies , 2006, NeuroImage.

[31]  Karl J. Friston,et al.  Psychophysiological and Modulatory Interactions in Neuroimaging , 1997, NeuroImage.

[32]  Li Min Li,et al.  Voxel-based morphometry in patients with idiopathic generalized epilepsies , 2006, NeuroImage.

[33]  S Mohammadi,et al.  Nerve fiber impairment of anterior thalamocortical circuitry in juvenile myoclonic epilepsy , 2008, Neurology.

[34]  Raffaele Canger,et al.  Frontal cognitive dysfunction in juvenile myoclonic epilepsy , 2008, Epilepsia.

[35]  Y. Smith,et al.  The thalamostriatal system: a highly specific network of the basal ganglia circuitry , 2004, Trends in Neurosciences.

[36]  David Barton,et al.  Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model , 2009, Journal of Computational Neuroscience.

[37]  C. Halldin,et al.  Reduced dopamine transporter binding in patients with juvenile myoclonic epilepsy , 2008, Neurology.

[38]  M. Symms,et al.  Networks in juvenile myoclonic epilepsy Brain 2012 : 135 ; 3635 – 3644 , 2012 .

[39]  Christian Vollmar,et al.  Connectivity of the supplementary motor area in juvenile myoclonic epilepsy and frontal lobe epilepsy , 2011, Epilepsia.

[40]  Robert Turner,et al.  BOLD correlates of EMG spectral density in cortical myoclonus: Description of method and case report , 2006, NeuroImage.

[41]  D. Janz,et al.  Epilepsy with impulsive petit mal (Juvenile Myoclonic Epilepsy) , 1985, Acta neurologica Scandinavica.

[42]  L. Danober,et al.  Pathophysiological mechanisms of genetic absence epilepsy in the rat , 1998, Progress in Neurobiology.

[43]  Don M. Tucker,et al.  Evidence that juvenile myoclonic epilepsy is a disorder of frontotemporal corticothalamic networks , 2010, NeuroImage.

[44]  Mark W. Woolrich,et al.  Robust group analysis using outlier inference , 2008, NeuroImage.

[45]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[46]  Nikolaus R. McFarland,et al.  Thalamic Relay Nuclei of the Basal Ganglia Form Both Reciprocal and Nonreciprocal Cortical Connections, Linking Multiple Frontal Cortical Areas , 2002, The Journal of Neuroscience.

[47]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[48]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[49]  V. Fung,et al.  Dysexecutive behaviour following deep brain lesions – A different type of disconnection syndrome? , 2012, Cortex.

[50]  Marco Bozzali,et al.  Anatomical connectivity mapping: A new tool to assess brain disconnection in Alzheimer's disease , 2011, NeuroImage.

[51]  Hal Blumenfeld,et al.  From Molecules to Networks: Cortical/Subcortical Interactions in the Pathophysiology of Idiopathic Generalized Epilepsy , 2003, Epilepsia.

[52]  C. F. Beckmann,et al.  Tensorial extensions of independent component analysis for multisubject FMRI analysis , 2005, NeuroImage.

[53]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[54]  P. Wolf [Juvenile myoclonic epilepsy]. , 2005, Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.

[55]  Peter Wolf,et al.  The system epilepsies: A pathophysiological hypothesis , 2012, Epilepsia.

[56]  K. Jarrod Millman,et al.  Analysis of Functional Magnetic Resonance Imaging in Python , 2007, Computing in Science & Engineering.

[57]  John S. Duncan,et al.  Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study , 2011, Brain : a journal of neurology.

[58]  J. Gotman,et al.  Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Alexis Roche,et al.  A Four-Dimensional Registration Algorithm With Application to Joint Correction of Motion and Slice Timing in fMRI , 2011, IEEE Transactions on Medical Imaging.