Performance Index-Based Evaluation of Quadruped RoboticWalking Configuration

This paper presents a performance index-based evaluation for a better quadruped robotic walking configuration. For this purpose, we propose a balance-based performance index that enables to evaluate the walk configuration of quadruped robots in terms of balance. In order to show the effectiveness the proposed performance index, we consider some types of walking configurations for a quadruped robotic walking and analyze the trend of the proposed performance index in those quadrupedal walking. Through the simulation study, it is shown that an effective walk configuration for a quadrupedal walking can be planned by adopting the proposed performance index.

[1]  Hiroaki Kitano,et al.  Development of an Autonomous Quadruped Robot for Robot Entertainment , 1998, Auton. Robots.

[2]  Kunikatsu Takase,et al.  Delivery service robot using distributed acquisition, actuators and intelligence , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[3]  Daniel E. Koditschek,et al.  A leg configuration measurement system for full-body pose estimates in a hexapod robot , 2005, IEEE Transactions on Robotics.

[4]  Eiji Nakano,et al.  Motion control technique for practical use of a leg-wheel robot on unknown outdoor rough terrains , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[5]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[6]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[7]  Won Keun Min On Fuzzy Weak r-minimal Continuity Between Fuzzy Minimal Spaces and Fuzzy Topological Spaces , 2010, Int. J. Fuzzy Log. Intell. Syst..

[8]  Charles A. Klein,et al.  Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion , 1985, IEEE J. Robotics Autom..

[9]  Kenneth J. Waldron,et al.  Machines That Walk: The Adaptive Suspension Vehicle , 1988 .

[10]  Jonathan E. Clark,et al.  Fast and Robust: Hexapedal Robots via Shape Deposition Manufacturing , 2002 .

[11]  S. Hirose,et al.  Development of quadruped walking robot TITAN-VIII , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[12]  Masashi Takahashi,et al.  Rough terrain locomotion of a leg-wheel hybrid quadruped robot , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[13]  Pablo González de Santos,et al.  Generating continuous free crab gaits for quadruped robots on irregular terrain , 2005, IEEE Transactions on Robotics.

[14]  Pablo González de Santos,et al.  An improved energy stability margin for walking machines subject to dynamic effects , 2005, Robotica.

[15]  R. McGhee,et al.  On the stability properties of quadruped creeping gaits , 1968 .

[16]  Masahiro Fujita,et al.  Autonomous evolution of dynamic gaits with two quadruped robots , 2005, IEEE Transactions on Robotics.

[17]  Kevin Blankespoor,et al.  BigDog, the Rough-Terrain Quadruped Robot , 2008 .

[18]  Byoung-Ho Kim,et al.  Centroid-based analysis of quadruped-robot walking balance , 2009, 2009 International Conference on Advanced Robotics.

[19]  K. Berns,et al.  Sensor components of the six-legged walking machine LAURON II , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.