Generalized Diagonal Band Copulas with Two-Sided Generating Densities

Copulas are joint continuous distributions with uniform marginals and have been proposed to capture probabilistic dependence between random variables. Maximum-entropy copulas introduced by Bedford and Meeuwissen (Bedford, T., A. M. H. Meeuwissen. 1997. Minimally informative distributions with given rank correlations for use in uncertainty analysis. J. Statist. Comput. Simulation57(1--4) 143--175) provide the option of making minimally informative assumptions given a degree-of-dependence constraint between two random variables. Unfortunately, their distribution functions are not available in a closed form, and their application requires the use of numerical methods. In this paper, we study a subfamily of generalized diagonal band (GDB) copulas, separately introduced by Ferguson (Ferguson, T. F. 1995. A class of symmetric bivariate uniform distributions. Statist. Papers36(1) 31--40) and Bojarski (Bojarski, J. 2001. A new class of band copulas---Distributions with uniform marginals. Technical report, Institute of Mathematics, Technical University of Zielona Gora, Zielona Gora, Poland). Similar to Archimedean copulas, GDB copula construction requires a generator function. Bojarski's GDB copula generator functions are symmetric probability density functions. In this paper, symmetric members of a two-sided framework of distributions introduced by van Dorp and Kotz (van Dorp, J. R., S. Kotz. 2003. Generalizations of two-sided power distributions and their convolution. Comm. Statist.: Theory and Methods32(9) 1703--1723) shall be considered. This flexible setup allows for derivations of GDB copula properties resulting in novel convenient expressions. A straightforward elicitation procedure for the GDB copula dependence parameter is proposed. Closed-form expressions for specific examples in the subfamily of GDB copulas are presented, which enhance their transparency and facilitate their application. These examples closely approximate the entropy of maximum-entropy copulas. Application of GDB copulas is illustrated via a value-of-information decision analysis example.

[1]  Felix Salmon The formula that killed Wall Street , 2012 .

[2]  Ali E. Abbas,et al.  Multiattribute Utility Copulas , 2009, Oper. Res..

[3]  Paul Embrechts,et al.  Copulas: A Personal View , 2009 .

[4]  Pu Gong,et al.  Measuring the coupled risks: A copula-based CVaR model , 2009 .

[5]  D. Lewandowski,et al.  High dimensional dependence: Copulae, sensitivity, sampling , 2008 .

[6]  W. Tao,et al.  Representation of 3D heterogeneous cloud fields using copulas: Theory for water clouds , 2008 .

[7]  Giuseppe Passoni,et al.  A multivariate model of sea storms using copulas , 2007 .

[8]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[9]  Tafadzwa Gwanoya Quantitative Risk Management: Concepts, Techniques, Tools. By Alexander J. McNeil, Rüdiger Frey & Paul Embrechts (Princeton University Press, 2005) , 2007, Annals of Actuarial Science.

[10]  Ali E. Abbas,et al.  Maximum Entropy Utility , 2004, Oper. Res..

[11]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[12]  Ali E. Abbas,et al.  Attribute Dominance Utility , 2005, Decis. Anal..

[13]  Michel Denuit,et al.  Actuarial Theory for Dependent Risks: Measures, Orders and Models , 2005 .

[14]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[15]  Daniel Lewandowski,et al.  Generalized diagonal band copulas , 2005 .

[16]  Ping Wang,et al.  Credibility Using Copulas , 2005 .

[17]  Samuel Kotz,et al.  Beyond Beta: Other Continuous Families Of Distributions With Bounded Support And Applications , 2004 .

[18]  E. Luciano,et al.  Copula Methods in Finance: Cherubini/Copula , 2004 .

[19]  Ravi Sreenivasan Applied Quantitative Finance: Theory and Computational Tools , 2004 .

[20]  E. Luciano,et al.  Copula methods in finance , 2004 .

[21]  Thorsten Rheinländer Risk Management: Value at Risk and Beyond , 2003 .

[22]  Samuel Kotz,et al.  Generalizations of Two-Sided Power Distributions and Their Convolution , 2003 .

[23]  A New Class of Band Copulas - Distributions with Uniform Marginals , 2002 .

[24]  E. Soofi,et al.  Information indices: unification and applications , 2002 .

[25]  M. J. Kallen,et al.  EXPERT AGGREGATION WITH DEPENDENCE , 2002 .

[26]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[27]  Robert T. Clemen,et al.  Making Hard Decisions with Decisiontools Suite , 2000 .

[28]  R. Clemen,et al.  Correlations and Copulas for Decision and Risk Analysis , 1999 .

[29]  Michael R. Duffey,et al.  Statistical dependence in risk analysis for project networks using Monte Carlo methods , 1999 .

[30]  Vicki M. Bier,et al.  An Application of Copulas to Accident Precursor Analysis , 1998 .

[31]  R. Nelsen An Introduction to Copulas , 1998 .

[32]  H. Joe Multivariate models and dependence concepts , 1998 .

[33]  Emiliano A. Valdez,et al.  1 UNDERSTANDING RELATIONSHIPS USING COPULAS * , 1998 .

[34]  Adrianus M. H. Meeuwissen,et al.  Minimally informative distributions with given rank correlation for use in uncertainty analysis , 1997 .

[35]  Emiliano A. Valdez,et al.  Annuity Valuation with Dependent Mortality , 1996 .

[36]  T. Ferguson A class of symmetric bivariate uniform distributions , 1995 .

[37]  C. Spearman The proof and measurement of association between two things. By C. Spearman, 1904. , 1987, The American journal of psychology.

[38]  C. Genest,et al.  The Joy of Copulas: Bivariate Distributions with Uniform Marginals , 1986 .

[39]  R M Cooke,et al.  Monte Carlo sampling for generalized knowledge dependence with application to human reliability. , 1986, Risk analysis : an official publication of the Society for Risk Analysis.

[40]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[41]  W. R. Schucany,et al.  Correlation structure in Farlie-Gumbel-Morgenstern distributions , 1978 .

[42]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[43]  W. Kruskal Ordinal Measures of Association , 1958 .

[44]  Nils Blomqvist,et al.  On a Measure of Dependence Between two Random Variables , 1950 .

[45]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[46]  E. Groves A Dissertation ON , 1928 .

[47]  K. Pearson NOTES ON THE HISTORY OF CORRELATION , 1920 .

[48]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.