REGIMVID at TRECVID 2009 : Semantic Access to Multimedia Data

In this paper we describe our TRECVID 2009 video retrieval experiments. The REGIMVID team participated in two tasks: High Level Feature Extraction and Automatic Search. Our TRECVID 2009 experiments focus on increasing the robustness of a small set of sensors and the relevance of the results using a probabilistic weighting of learning examples.

[1]  Chong-Wah Ngo,et al.  Columbia University/VIREO-CityU/IRIT TRECVID2008 High-Level Feature Extraction and Interactive Video Search , 2008, TRECVID.

[2]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Frédéric Jurie,et al.  Sampling Strategies for Bag-of-Features Image Classification , 2006, ECCV.

[4]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[5]  Hsuan-Tien Lin,et al.  A note on Platt’s probabilistic outputs for support vector machines , 2007, Machine Learning.

[6]  Adel M. Alimi,et al.  REGIM at TRECVID2008: High-level Features Extraction and Video Search , 2008, TRECVID.

[7]  Dong Wang,et al.  Video diver: generic video indexing with diverse features , 2007, MIR '07.

[8]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[9]  Dennis Koelma,et al.  The MediaMill TRECVID 2008 Semantic Video Search Engine , 2008, TRECVID.

[10]  Marin Ferecatu,et al.  Approximate search vs. precise search by visual content in cultural heritage image databases , 2002 .

[11]  Marcel Worring,et al.  The Semantic Pathfinder: Using an Authoring Metaphor for Generic Multimedia Indexing , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).