Neuronal homeostasis: time for a change?

Abstract  Homeostatic processes that regulate electrical activity in neurones are now an established aspect of physiology and rest on a large body of experimental evidence that points to roles in development, learning and memory, and disease. However, the concepts underlying homeostasis are too often summarized in ways that restrict their explanatory power and obviate important subtleties. Here, we present a review of the underlying theory of homeostasis – control theory – in an attempt to reconcile some existing conceptual problems in the context of neuronal physiology. In addition to clarifying the underlying theory, this review highlights the remaining challenges posed when analysing homeostatic phenomena that underlie the regulation of neuronal excitability. Moreover, we suggest approaches for future experimental and computational work that will further our understanding of neuronal homeostasis and the fundamental neurophysiological functions it serves.

[1]  M. Berridge,et al.  Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature reviews. Molecular cell biology.

[2]  Raag D. Airan,et al.  Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures , 2010, Nature Protocols.

[3]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[4]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[5]  M. J. Davis,et al.  Regulation of ion channels by protein tyrosine phosphorylation. , 2001, American journal of physiology. Heart and circulatory physiology.

[6]  E. Marder,et al.  Compensation for Variable Intrinsic Neuronal Excitability by Circuit-Synaptic Interactions , 2010, The Journal of Neuroscience.

[7]  I. Levitan,et al.  Modulation of ion channels by protein phosphorylation and dephosphorylation. , 1994, Annual review of physiology.

[8]  W. R. Foster,et al.  Significance of conductances in Hodgkin-Huxley models. , 1993, Journal of neurophysiology.

[9]  Andrew M. Wikenheiser,et al.  Protein Kinase A Mediates Activity-Dependent Kv4.2 Channel Trafficking , 2008, The Journal of Neuroscience.

[10]  K. Holthoff,et al.  A problem with Hebb and local spikes , 2002, Trends in Neurosciences.

[11]  Christof Koch,et al.  How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate , 1999, Nature Neuroscience.

[12]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , 2022 .

[13]  D. Chetkovich,et al.  Activity-dependent Regulation of h Channel Distribution in Hippocampal CA1 Pyramidal Neurons* , 2007, Journal of Biological Chemistry.

[14]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[15]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[16]  Bruce R. Johnson,et al.  Activity-Independent Homeostasis in Rhythmically Active Neurons , 2003, Neuron.

[17]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  E. Marder,et al.  Variable channel expression in identified single and electrically coupled neurons in different animals , 2006, Nature Neuroscience.

[19]  E. Marder,et al.  Failure of averaging in the construction of a conductance-based neuron model. , 2002, Journal of neurophysiology.

[20]  B. Bean,et al.  Robustness of Burst Firing in Dissociated Purkinje Neurons with Acute or Long-Term Reductions in Sodium Conductance , 2005, The Journal of Neuroscience.

[21]  E. Marder,et al.  Activity-dependent regulation of conductances in model neurons. , 1993, Science.

[22]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[23]  R. Tsien,et al.  Adaptation to Synaptic Inactivity in Hippocampal Neurons , 2005, Neuron.

[24]  E. Sobie Parameter sensitivity analysis in electrophysiological models using multivariable regression. , 2009, Biophysical journal.

[25]  W. Wadman,et al.  Background activity regulates excitability of rat hippocampal CA1 pyramidal neurons by adaptation of a K+ conductance. , 2006, Journal of neurophysiology.

[26]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[27]  Astrid A. Prinz,et al.  Geometry and dynamics of activity-dependent homeostatic regulation in neurons , 2009, BMC Neuroscience.

[28]  Nicholas C. Spitzer,et al.  Phenotypic checkpoints regulate neuronal development , 2010, Trends in Neurosciences.

[29]  Eve Marder,et al.  Functional consequences of animal-to-animal variation in circuit parameters , 2009, Nature Neuroscience.

[30]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[31]  John F. Disterhoft,et al.  Learning, aging and intrinsic neuronal plasticity , 2006, Trends in Neurosciences.

[32]  Eve Marder,et al.  Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. , 2003, Journal of neurophysiology.

[33]  Dean V Buonomano,et al.  A learning rule for the emergence of stable dynamics and timing in recurrent networks. , 2005, Journal of neurophysiology.

[34]  Mark C. W. van Rossum,et al.  Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization , 2010, The Journal of physiology.

[35]  D. Dickman,et al.  A Hierarchy of Cell Intrinsic and Target-Derived Homeostatic Signaling , 2010, Neuron.

[36]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[37]  F. H. Adler Cybernetics, or Control and Communication in the Animal and the Machine. , 1949 .

[38]  L. Cooper,et al.  Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Karl Deisseroth,et al.  A role for circuit homeostasis in adult neurogenesis , 2005, Trends in Neurosciences.

[40]  Cian O'Donnell,et al.  Stochastic Ion Channel Gating in Dendritic Neurons: Morphology Dependence and Probabilistic Synaptic Activation of Dendritic Spikes , 2010, PLoS Comput. Biol..

[41]  Eve Marder,et al.  Structure and visualization of high-dimensional conductance spaces. , 2006, Journal of neurophysiology.

[42]  D. Debanne,et al.  Long-term plasticity of intrinsic excitability: learning rules and mechanisms. , 2003, Learning & memory.

[43]  M. Häusser,et al.  Initiation and spread of sodium action potentials in cerebellar purkinje cells , 1994, Neuron.

[44]  E. Marder Variability, compensation, and modulation in neurons and circuits , 2011, Proceedings of the National Academy of Sciences.

[45]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[46]  M. Nolan,et al.  Tuning of synaptic responses: an organizing principle for optimization of neural circuits , 2011, Trends in Neurosciences.

[47]  John M. Ball,et al.  Coregulation of Ion Channel Conductances Preserves Output in a Computational Model of a Crustacean Cardiac Motor Neuron , 2010, The Journal of Neuroscience.

[48]  Y. Jan,et al.  Activity- and mTOR-Dependent Suppression of Kv1.1 Channel mRNA Translation in Dendrites , 2006, Science.

[49]  Christof Koch,et al.  Detecting and Estimating Signals in Noisy Cable Structures, I: Neuronal Noise Sources , 1999, Neural Computation.

[50]  A. van Oudenaarden,et al.  MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. , 2007, Molecular cell.

[51]  L. S. Leung,et al.  Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. , 1998, Journal of neurophysiology.

[52]  Arthur D Kuo,et al.  The relative roles of feedforward and feedback in the control of rhythmic movements. , 2002, Motor control.

[53]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[54]  Zdzislaw Bubnicki,et al.  Modern Control Theory , 2005 .

[55]  Jochen Triesch,et al.  Synergies Between Intrinsic and Synaptic Plasticity Mechanisms , 2007, Neural Computation.

[56]  E. Marder,et al.  How Multiple Conductances Determine Electrophysiological Properties in a Multicompartment Model , 2009, The Journal of Neuroscience.

[57]  Cengiz Günay,et al.  Model Calcium Sensors for Network Homeostasis: Sensor and Readout Parameter Analysis from a Database of Model Neuronal Networks , 2010, The Journal of Neuroscience.

[58]  M. Kozak,et al.  Regulation of translation in eukaryotic systems. , 1992, Annual review of cell biology.

[59]  E Marder,et al.  Activity-dependent current distributions in model neurons. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Ivan Soltesz,et al.  Homeostatic Plasticity Studied Using In Vivo Hippocampal Activity-Blockade: Synaptic Scaling, Intrinsic Plasticity and Age-Dependence , 2007, PloS one.

[61]  Niraj S. Desai,et al.  Plasticity in the intrinsic excitability of cortical pyramidal neurons , 1999, Nature Neuroscience.

[62]  G. Turrigiano The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses , 2008, Cell.

[63]  Mark C. W. van Rossum,et al.  Stable Hebbian Learning from Spike Timing-Dependent Plasticity , 2000, The Journal of Neuroscience.

[64]  Jean-Marc Goaillard,et al.  Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression , 2007, Proceedings of the National Academy of Sciences.

[65]  D. Johnston,et al.  Plasticity of dendritic excitability. , 2005, Journal of neurobiology.

[66]  E. Schuman,et al.  Dendritic Protein Synthesis, Synaptic Plasticity, and Memory , 2006, Cell.

[67]  G. Davis Homeostatic control of neural activity: from phenomenology to molecular design. , 2006, Annual review of neuroscience.

[68]  Niraj S. Desai,et al.  Homeostatic plasticity in the CNS: synaptic and intrinsic forms , 2003, Journal of Physiology-Paris.

[69]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[70]  W. Brogan Modern Control Theory , 1971 .

[71]  I. Levitan,et al.  Signaling protein complexes associated with neuronal ion channels , 2006, Nature Neuroscience.

[72]  A. van Oudenaarden,et al.  Noise Propagation in Gene Networks , 2005, Science.

[73]  D. Buonomano,et al.  Cortical plasticity: from synapses to maps. , 1998, Annual review of neuroscience.

[74]  Jorge Golowasch,et al.  Modeling recovery of rhythmic activity: Hypothesis for the role of a calcium pump , 2007, Neurocomputing.

[75]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[76]  Trevor A. Day,et al.  Defining stress as a prelude to mapping its neurocircuitry: No help from allostasis , 2005, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[77]  Gina G. Turrigiano,et al.  Multiple Modes of Network Homeostasis in Visual Cortical Layer 2/3 , 2008, The Journal of Neuroscience.

[78]  John Guckenheimer,et al.  Activity-independent coregulation of IA and Ih in rhythmically active neurons. , 2005, Journal of neurophysiology.

[79]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[80]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[81]  S. Laughlin,et al.  Ion-Channel Noise Places Limits on the Miniaturization of the Brain’s Wiring , 2005, Current Biology.

[82]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[83]  G. Turrigiano Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same , 1999, Trends in Neurosciences.

[84]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Sung-Cherl Jung,et al.  Regulation of Dendritic Excitability by Activity-Dependent Trafficking of the A-Type K+ Channel Subunit Kv4.2 in Hippocampal Neurons , 2007, Neuron.

[86]  G. Turrigiano Homeostatic signaling: the positive side of negative feedback , 2007, Current Opinion in Neurobiology.

[87]  S. Nelson,et al.  Hebb and homeostasis in neuronal plasticity , 2000, Current Opinion in Neurobiology.

[88]  E. Marder,et al.  Multiple models to capture the variability in biological neurons and networks , 2011, Nature Neuroscience.

[89]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[90]  E. Marder,et al.  Activity-dependent changes in the intrinsic properties of cultured neurons. , 1994, Science.

[91]  William Wisden,et al.  Adaptive regulation of neuronal excitability by a voltage- independent potassium conductance , 2001, Nature.

[92]  Jochen Triesch,et al.  A Gradient Rule for the Plasticity of a Neuron's Intrinsic Excitability , 2005, ICANN.

[93]  J P Lasalle,et al.  TIME OPTIMAL CONTROL SYSTEMS. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[94]  C. Rao,et al.  Control, exploitation and tolerance of intracellular noise , 2002, Nature.

[95]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[96]  L. F. Abbott,et al.  Analysis of Neuron Models with Dynamically Regulated Conductances , 1993, Neural Computation.