Interference Rejection in Receivers by Frequency Translated Low-Pass Filtering and Digitally Enhanced Harmonic-Rejection Mixing

Software-Defined Radio (SDR) and Cognitive Radio (CR) concepts have recently drawn considerable interest. These radio concepts built on digital signal processing to realize flexibly programmable radio transceivers, which can adapt in a smart way to their environment. As CMOS is the mainstream IC technology for digital, we would also like to realize SDR and CR radio transceivers in CMOS. Attempts are being made to integrate the functionality of multiple dedicated narrowband radios into one radio chip, which is reconfigurable by software [1, 2]. This is hoped to bring cost and size reductions while supporting an ever increasing set of communication standards in a single device. The SDR concept might also allow field upgradable radios to accommodate evolving standards or cognitive radios to improve the efficiency of spectrum use [3].

[1]  Minjae Lee,et al.  An 800-MHz–6-GHz Software-Defined Wireless Receiver in 90-nm CMOS , 2006, IEEE Journal of Solid-State Circuits.

[2]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[3]  Eric A. M. Klumperink,et al.  A software-defined radio receiver architecture robust to out-of-band interference , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[4]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[5]  Willy Sansen,et al.  Distortion in elementary transistor circuits , 1999 .

[6]  B. Widrow,et al.  Adaptive noise cancelling: Principles and applications , 1975 .

[7]  W. Redman-White,et al.  1/f noise in passive CMOS mixers for low and zero IF integrated receivers , 2001, Proceedings of the 27th European Solid-State Circuits Conference.

[8]  Nikolaus Klemmer,et al.  A SAW-less multiband WEDGE receiver , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[9]  Ali M. Niknejad,et al.  A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation , 2007, IEEE Journal of Solid-State Circuits.

[10]  Lu Han,et al.  A Single–Chip 10-Band WCDMA/HSDPA 4-Band GSM/EDGE SAW-less CMOS Receiver With DigRF 3G Interface and ${+}$90 dBm IIP2 , 2009, IEEE Journal of Solid-State Circuits.

[11]  Michiel Steyaert,et al.  A 2mm2 0.1-to-5GHz SDR receiver in 45nm digital CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[12]  R. Castello,et al.  A 72-mW CMOS 802.11a direct conversion front-end with 3.5-dB NF and 200-kHz 1/f noise corner , 2005, IEEE Journal of Solid-State Circuits.

[13]  Tao Wu,et al.  An Embedded 65 nm CMOS Baseband IQ 48 MHz–1 GHz Dual Tuner for DOCSIS 3.0 , 2010, IEEE Journal of Solid-State Circuits.

[14]  Nicola Laurenti,et al.  A Reconfigurable Narrow-Band MB-OFDM UWB Receiver Architecture , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[16]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[17]  Eric A. M. Klumperink,et al.  On the Effect of Spectral Location of Interferers on Linearity Requirements for Wideband Cognitive Radio Receivers , 2010, 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum (DySPAN).

[18]  Kwyro Lee,et al.  A CMOS Harmonic Rejection Mixer With Mismatch Calibration Circuitry for Digital TV Tuner Applications , 2008, IEEE Microwave and Wireless Components Letters.

[19]  Mikko Valkama,et al.  Advanced methods for I/Q imbalance compensation in communication receivers , 2001, IEEE Trans. Signal Process..

[20]  B. Nauta,et al.  A wideband high-linearity RF receiver front-end in CMOS , 2004, Proceedings of the 30th European Solid-State Circuits Conference.

[21]  J. Chiu,et al.  A frequency translation technique for SAW-Less 3G receivers , 2009, 2009 Symposium on VLSI Circuits.

[22]  Eric A. M. Klumperink,et al.  Systematic comparison of HF CMOS transconductors , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[23]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[24]  Zhiyu Ru,et al.  Frequency translation techniques for interference-robust software-defined radio receivers , 2009 .

[25]  B. Nauta,et al.  The Blixer, a Wideband Balun-LNA-I/Q-Mixer Topology , 2008, IEEE Journal of Solid-State Circuits.

[26]  Eric A. M. Klumperink,et al.  Discrete-Time Mixing Receiver Architecture for RF-Sampling Software-Defined Radio , 2010, IEEE Journal of Solid-State Circuits.

[27]  Eric A. M. Klumperink,et al.  A Discrete-Time Mixing Receiver Architecture with Wideband Harmonic Rejection , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[28]  Alan Chang,et al.  A 65 nm CMOS Inductorless Triple Band Group WiMedia UWB PHY , 2009, IEEE Journal of Solid-State Circuits.

[29]  Eric A. M. Klumperink,et al.  A 0.2-to-2.0GHz 65nm CMOS receiver without LNA achieving ≫11dBm IIP3 and ≪6.5 dB NF , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[30]  Elias Dagher,et al.  Single-chip multiband WCDMA/HSDPA/HSUPA/EGPRS transceiver with diversity receiver and 3G DigRF interface without SAW filters in transmitter / 3G receiver paths , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[31]  Eric A. M. Klumperink,et al.  A Two-Stage Approach to Harmonic Rejection Mixing Using Blind Interference Cancellation , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[32]  Eisse Mensink,et al.  Distortion cancellation by polyphase multipath circuits , 2005, IEEE Trans. Circuits Syst. I Regul. Pap..

[33]  Stephan Carel Blaakmeer Compact wideband CMOS receiver frontends for wireless communication , 2010 .

[34]  P. Sivonen,et al.  A 1.2-V Highly Linear Balanced Noise-Cancelling LNA in 0.13-$\mu{\hbox{m}}$ CMOS , 2008, IEEE Journal of Solid-State Circuits.

[35]  Eisse Mensink,et al.  A Polyphase Multipath Technique for Software-Defined Radio Transmitters , 2006, IEEE Journal of Solid-State Circuits.

[36]  Li Lin,et al.  A 1.75 GHz highly-integrated narrow-band CMOS transmitter with harmonic-rejection mixers , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[37]  L. Larson,et al.  Modified derivative superposition method for linearizing FET low-noise amplifiers , 2004, IEEE Transactions on Microwave Theory and Techniques.

[38]  B. A. Wooley,et al.  A 1.8-V digital-audio sigma-delta modulator in 0.8-/spl mu/m CMOS , 1997 .

[39]  H. Darabi,et al.  A 65nm CMOS quad-band SAW-less receiver for GSM/GPRS/EDGE , 2010, 2010 Symposium on VLSI Circuits.

[40]  Bang-Sup Song,et al.  A 48–860 MHz CMOS Low-IF Direct-Conversion DTV Tuner , 2008, IEEE Journal of Solid-State Circuits.

[41]  Eisse Mensink,et al.  Cognitive radios for dynamic spectrum access - polyphase multipath radio circuits for dynamic spectrum access , 2007, IEEE Communications Magazine.

[42]  N. A. Moseley,et al.  Digitally Enhanced Software-Defined Radio Receiver Robust to Out-of-Band Interference , 2009, IEEE Journal of Solid-State Circuits.

[43]  Adrian Maxim,et al.  A DDFS Driven Mixing-DAC with Image and Harmonic Rejection Capabilities , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[44]  Eric A. M. Klumperink,et al.  A 400-to-900 MHz receiver with dual-domain harmonic rejection exploiting adaptive interference cancellation , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[45]  R. Engelbrecht,et al.  DIGEST of TECHNICAL PAPERS , 1959 .