Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: a case study from the Dlhá dolina valley (Gemericum, Slovakia)

Abstract A unique case of low-temperature metamorphic (hydrothermal) overprint of peraluminous, highly evolved rare-metal S-type granite is described. The hidden Dlhá dolina granite pluton of Permian age (Western Carpathians, eastern Slovakia) is composed of barren biotite granite, mineralized Li-mica granite and albitite. Based on whole-rock chemical data and evaluation of compositional variations of rock-forming and accessory minerals (Rb-P-enriched K-feldspar and albite; biotite, zinnwaldite and di-octahedral micas; Hf-(Sc)-rich zircon, fluorapatite, topaz, schorlitic tourmaline), the following evolutionary scenario is proposed: (1) Intrusion of evolved peraluminous melt enriched in Li, B, P, F, Sn, Nb, Ta, and W took place followed by intrusion of a large body of biotite granites into Paleozoic metapelites and metarhyolite tuffs; (2) The highly evolved melt differentiated in situ forming tourmaline-bearing Li-biotite granite at the bottom, topaz-zinnwaldite granite in the middle, and quartz albitite to albitite at the top of the cupola. The main part of the Sn, Nb, and Ta crystallized from the melt as disseminated cassiterite and Nb-Ta oxide minerals within the albitite, while disseminated wolframite appears mainly within the topaz-zinnwaldite granite. The fluid separated from the last portion of crystallized magma caused small scale greisenization of the albitite; (3) Alpine (Cretaceous) thrusting strongly tectonized and mylonitized the upper part of the pluton. Hydrothermal low-temperature fluids enriched in Ca, Mg, and CO2 unfiltered mechanically damaged granite. This fluid-driven overprint caused formation of carbonate veinlets, alteration and release of phosphorus from crystal lattice of feldspars and Li from micas, precipitating secondary Sr-enriched apatite and Mg-rich micas. Consequently, all bulk-rock and mineral markers were reset and now represent the P-T conditions of the Alpine overprint.

[1]  T. Vaculovic,et al.  Alpine oxidation of lithium micas in Permian S-type granites (Gemeric unit, Western Carpathians, Slovakia) , 2014, Mineralogical Magazine.

[2]  D. London A petrologic assessment of internal zonation in granitic pegmatites , 2014 .

[3]  K. Breiter Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe , 2012 .

[4]  Jarchovsky The nature and genesis of greisen stocks at Krasno, Slavkovsky les area - Western Bohemia, Czech Republic , 2012 .

[5]  P. Jeřábek,et al.  Origin and metamorphic evolution of magnesite-talc and adjacent rocks near Gemerska Poloma, Slovak Republic , 2012 .

[6]  I. Dunkl,et al.  Zircon fission-track dating of granites from the Vepor-Gemer Belt (Western Carpathians): constraints for the Early Alpine exhumation history , 2012 .

[7]  M. Kubiś,et al.  The granite system near Betliar village (Gemeric Superunit, Western Carpathians): evolution of a composite silicic reservoir , 2012 .

[8]  L. I. Solomovich,et al.  Geology and mineralization of the Uchkoshkon tin deposit associated with a breccia pipe, Eastern Kyrgyzstan , 2012 .

[9]  Günter Hösel Das Zinnerz-Lagerstättengebiet Ehrenfriedersdorf/Erzgebirge , 2011 .

[10]  A. Larionov,et al.  Late Cambrian/Ordovician magmatic arc type volcanism in the Southern Gemericum basement, Western Carpathians, Slovakia: U–Pb (SHRIMP) data from zircons , 2010 .

[11]  R. Romer,et al.  Pre-Mesozoic Geology of Saxo-Thuringia , 2010 .

[12]  P. Uher,et al.  Magmatic and post-magmatic Y-REE-Th phosphate, silicate and Nb-Ta-Y-REE oxide minerals in A-type metagranite: an example from the Turčok massif, the Western Carpathians, Slovakia , 2009, Mineralogical Magazine.

[13]  J. Frantz,et al.  THE WORLD-CLASS Sn, Nb, Ta, F (Y, REE, Li) DEPOSIT AND THE MASSIVE CRYOLITE ASSOCIATED WITH THE ALBITE-ENRICHED FACIES OF THE MADEIRA A-TYPE GRANITE, PITINGA MINING DISTRICT, AMAZONAS STATE, BRAZIL , 2009 .

[14]  D. Küster Granitoid-hosted Ta mineralization in the Arabian–Nubian Shield: Ore deposit types, tectono-metallogenetic setting and petrogenetic framework , 2009 .

[15]  P. Uher,et al.  Nb-Ta-Ti-W-Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesí, Czech Republic , 2007 .

[16]  P. Uher,et al.  Nb-Ta-Ti-W-Sn-oxide minerals - monitor of evolution of a peraluminous granite system, Podlesí, Czech Republic , 2006 .

[17]  H. Stein,et al.  Re–Os molybdenite dating of granite-related Sn–W–Mo mineralisation at Hnilec, Gemeric Superunit, Slovakia , 2005 .

[18]  A. Müller,et al.  Textural and chemical evolution of a fractionated granitic system: the Podlesí stock, Czech Republic , 2005 .

[19]  A. Kronz,et al.  Phosphorus-rich topaz from fractionated granites (Podlesí, Czech Republic) , 2004 .

[20]  P. Uher,et al.  First Permian–Early Triassic zircon ages for tin‐bearing granites from the Gemeric unit (Western Carpathians, Slovakia): connection to the post‐collisional extension of the Variscan orogen and S‐type granite magmatism , 2002 .

[21]  K. Breiter From explosive breccia to unidirectional solidification textures: magmatic evolution of a phosphorus- and fluorine-rich granite system (Podlesí, Krušné hory Mts., Czech Republic) , 2002 .

[22]  K. Breiter,et al.  Phosphorus and rubidium in alkali feldspars:case studies and possible genetic interpretation , 2002 .

[23]  R. Seltmann,et al.  Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebirge-Slavkovský les metallogenic province , 1999 .

[24]  H. Förster,et al.  The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data , 1999, Mineralogical Magazine.

[25]  I. Haapala Metallogeny of the Rapakivi granites , 1995 .

[26]  J. Joron,et al.  Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central , 1995 .

[27]  D. London,et al.  Behavior and effects of phosphorus in the system Na2O−K2O−Al2O3−SiO2−P2O5−H2O at 200 MPa(H2O) , 1993 .

[28]  A. H. Clark,et al.  Diachronous and independent histories of plutonism and mineralization in the Cornubian Batholith, southwest England , 1993, Journal of the Geological Society.

[29]  S. Kesler Metallogeny of tin lecture notes in earth sciences 32: B. Lehmann. edited by S. Battacharji et al. Springer-Verlag, 1990, viii + 211p., US $29.00 (ISBN 0-387-52806-7) , 1992 .

[30]  A. Cheilletz,et al.  Ages 40Ar/39Ar du leucogranite à topaze-lépidolite de Beauvoir et des pegmatites sodolithiques de Chédeville (Nord du Massif Central, France). Signification pétrologique et géodynamique , 1992 .

[31]  B. Lehmann Metallogeny of Tin , 1991 .

[32]  Manfred Reinhardt,et al.  The "World Class" , 1990 .

[33]  D. Němec,et al.  Regionally metamorphosed greisens of the Moldanubicum , 1986 .

[34]  M. Štemprok,et al.  Geochemical profile through an ore-bearing lithium granite , 1969 .

[35]  B. Mason Composition of the Earth , 1966, Nature.