High-contrast imaging of space objects using diffractive optics

We are designing a telescope imaging system based on an apodized diffractive optical element called an apodized photon sieve (APS) in order to detect exoplanets. APSs are orders of magnitude less massive, lightweight and more compactable than mirrors. Proposed imaging system can be installed on any telescope as an "attachment" or used as a telescope itself as a part of a CubeSat payload. Methods were developed for designing the apodized sieves, measuring PSFs, and characterizing high-contrast performance of the imaging system. This new kind of APS has rotational symmetry and provides high-contrast (up to 10-10 levels) in all directions with just one image with the throughput of 40% or higher.