Optimum structural design of a two-limb Schönflies motion generator

Abstract The optimum dimensions of a two-limb Schonflies motion generator, to maximize the overall stiffness of the robot structure is the subject of this paper. In the six-dimensional Cartesian space, for a mechanical system, six independent stiffnesses can be defined: three translational along three independent directions and three rotational about axes parallel to these directions. In this study, the objective is to maximize the maximum translational and rotational stiffnesses when the robot is at a specific pose. To this end, first, the stiffness matrix of the robot is obtained using the concept of the generalized spring; second, by introducing the translational and rotational stiffness indices κ t and κ r , respectively, two objective functions are defined. For the optimization procedure, a genetic algorithm (GA) is used. As a result, three different designs are introduced, their stiffness performance over a test trajectory then being analyzed. At the end, the sensitivity analysis of the robot stiffness with respect to some design parameters is studied.

[1]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[2]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms , 1995 .

[3]  J. Angeles,et al.  Optimization of a Test Trajectory for SCARA Systems , 2008 .

[4]  Zhen Gao,et al.  Design optimization of a spatial six degree-of-freedom parallel manipulator based on artificial intelligence approaches , 2010 .

[5]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[6]  Ridha Kelaiaia,et al.  Multiobjective optimization of a linear Delta parallel robot , 2012 .

[7]  M. J. Box A New Method of Constrained Optimization and a Comparison With Other Methods , 1965, Comput. J..

[8]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[9]  Marco Ceccarelli,et al.  A multi-objective optimum design of general 3R manipulators for prescribed workspace limits , 2004 .

[10]  Feng Gao,et al.  Optimum design of 3-DOF spherical parallel manipulators with respect to the conditioning and stiffness indices , 2000 .

[11]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[12]  Josip Loncaric,et al.  Normal forms of stiffness and compliance matrices , 1987, IEEE Journal on Robotics and Automation.

[13]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[14]  Y. Tarnopol’skii,et al.  Engineering mechanics of composites , 1990 .

[15]  Dominique Deblaise,et al.  A systematic analytical method for PKM stiffness matrix calculation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[16]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[17]  K. Miller,et al.  Optimal kinematic design of spatial parallel manipulators: Application to Linear Delta robot , 2003 .

[18]  Jorge Angeles,et al.  On the elastostatic analysis of mechanical systems , 2012 .

[19]  Michael P. Fourman,et al.  Compaction of Symbolic Layout Using Genetic Algorithms , 1985, ICGA.

[20]  J. Fauroux,et al.  Evaluation of a 4-Degree of Freedom Parallel Manipulator Stiffness , 2003 .

[21]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[22]  Clément Gosselin,et al.  Stiffness mapping for parallel manipulators , 1990, IEEE Trans. Robotics Autom..

[23]  Isaac M Daniel,et al.  Engineering Mechanics of Composite Materials , 1994 .

[24]  Saeed Ebrahimi,et al.  Parameter Analysis and Normalization for the Dynamics and Design of Multibody Systems , 2009 .

[25]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[26]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[27]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[28]  Damien Chablat,et al.  Stiffness Analysis Of Multi-Chain Parallel Robotic Systems , 2008, ArXiv.