Appearance Kalman tracking under severe occlusions

We propose a new method for object tracking in image sequences us-ing template matching. To update the template, appearance features aresmoothed temporally by robust and adaptive Kalman filters, o ne to eachpixel, making the method robust against severe occlusions. The methodis also robust to abrupt changes of lighting conditions, especially whenphotometric invariant color features are used to model the object ap-pearance. The parameters of the Kalman filters are tuned auto maticallyover time. The method is computationally fast enough to track objectsin real time.

[1]  Marcel Worring,et al.  The UvA color document dataset , 2004, International Journal of Document Analysis and Recognition (IJDAR).

[2]  Arnold W. M. Smeulders,et al.  Combining strings and necklaces for interactive three-dimensional segmentation of spinal images using an Integral deformable spine model , 2004, IEEE Transactions on Biomedical Engineering.

[3]  Dennis Koelma,et al.  User transparency: a fully sequential programming model for efficient data parallel image processing , 2004, Concurr. Pract. Exp..

[4]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[5]  Michael J. Black,et al.  Recognizing Facial Expressions in Image Sequences Using Local Parameterized Models of Image Motion , 1997, International Journal of Computer Vision.

[6]  Arnold W. M. Smeulders,et al.  Template tracking using color invariant pixel features , 2002, Proceedings. International Conference on Image Processing.

[7]  Marcel Worring,et al.  Interactive adaptive movie annotation , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[8]  Patrick Pérez,et al.  Towards Improved Observation Models for Visual Tracking: Selective Adaptation , 2002, ECCV.

[9]  Marcel Worring,et al.  Interactive Logical Story Unit Segmenta- tion , 2002 .

[10]  David J. Fleet,et al.  Robust online appearance models for visual tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[11]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  M. Worring,et al.  Occlusion robust adaptive template tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[13]  Ying Wu,et al.  A co-inference approach to robust visual tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[14]  Arnold W. M. Smeulders,et al.  Grouping lines. Finding curvilinear structures in images , 2001 .

[15]  David J. Fleet,et al.  Stochastic Tracking of 3D Human Figures Using 2D Image Motion , 2000, ECCV.

[16]  Rama Chellappa,et al.  Simultaneous tracking and verification via sequential posterior estimation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[17]  Hai Tao,et al.  Dynamic layer representation with applications to tracking , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[18]  Arnold W. M. Smeulders,et al.  PicToSeek: combining color and shape invariant features for image retrieval , 2000, IEEE Trans. Image Process..

[19]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[21]  Arnold W. M. Smeulders,et al.  A line tracker , 1997 .

[22]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[23]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[24]  Guanrong Chen,et al.  Introduction to random signals and applied Kalman filtering, 2nd edn. Robert Grover Brown and Patrick Y. C. Hwang, Wiley, New York, 1992. ISBN 0‐471‐52573‐1, 512 pp., $62.95. , 1992 .

[25]  Tzay Y. Young,et al.  A Mathematical Model for Computer Image Tracking , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.