Measuring the Fractal Dimension of Signals: Morphological Covers and Iterative Optimization
暂无分享,去创建一个
[1] R. Schafer,et al. Morphological systems for multidimensional signal processing , 1990, Proc. IEEE.
[2] Stanley R Sternberg,et al. Grayscale morphology , 1986 .
[3] H. Minkowski,et al. Über die Begriffe Länge, Oberfläche und Volumen , 1989 .
[4] Curtis T. McMullen,et al. The Hausdorff dimension of general Sierpiński carpets , 1984, Nagoya Mathematical Journal.
[5] S. Kay,et al. Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture , 1986, IEEE Transactions on Medical Imaging.
[6] H. Heijmans,et al. The algebraic basis of mathematical morphology , 1988 .
[7] C. Roques-Carmes,et al. Evaluation de la dimension fractale d'un graphe , 1988 .
[8] T. Peli,et al. Multi-Scale Fractal and Correlation Signatures for Image Screening and Natural Clutter Suppression , 1989, Other Conferences.
[9] J. Yorke,et al. Dimension of chaotic attractors , 1982 .
[10] Petros Maragos,et al. Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters , 1987, IEEE Trans. Acoust. Speech Signal Process..
[11] Monson H. Hayes,et al. Hidden-variable fractal interpolation of discrete sequences , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.
[12] S. Zucker,et al. Evaluating the fractal dimension of profiles. , 1989, Physical review. A, General physics.
[13] J. Serra,et al. An overview of morphological filtering , 1992 .
[14] Douglas P. Hardin,et al. The capacity for a class of fractal functions , 1986 .
[15] Xinhua Zhuang,et al. Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[16] A. Besicovitch. On the sum of digits of real numbers represented in the dyadic system. , 1935 .
[17] Richard F. Voss,et al. Fractals in nature: from characterization to simulation , 1988 .
[18] M. Berry,et al. On the Weierstrass-Mandelbrot fractal function , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[19] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[20] Alex Pentland,et al. Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[21] Paul Meakin,et al. Diffusion-controlled cluster formation in 2—6-dimensional space , 1983 .
[22] A. Besicovitch. Sets of Fractional Dimensions (IV): On Rational Approximation to Real Numbers , 1934 .
[23] B. Mandelbrot. Self-Affine Fractals and Fractal Dimension , 1985 .
[24] Michael C. Stein. Fractal Image Models And Object Detection , 1987, Other Conferences.
[25] Ahmed H. Tewfik,et al. Maximum likelihood estimation of the fractal dimensions of stochastic fractals and Cramer-Rao bounds , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.
[26] Petros Maragos,et al. Measuring Fractal Dimension: Morphological Estimates And Iterative Optimization , 1989, Other Conferences.
[27] Alan C. Bovik,et al. Localized measurement of image fractal dimension using gabor filters , 1991, J. Vis. Commun. Image Represent..
[28] Robert Bartle,et al. The Elements of Real Analysis , 1977, The Mathematical Gazette.
[29] Joseph Naor,et al. Multiple Resolution Texture Analysis and Classification , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[30] H. D. Ursell,et al. Sets of Fractional Dimensions (V) : On Dimensional Numbers of Some continuous Curves , 1937 .
[31] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .