Five Cu(I) and Zn(II) clusters and coordination polymers of 2-pyridyl-1,2,3-triazoles: synthesis, structures and luminescence properties

Three stair-step [Cu4I4] cluster-based complexes [Cu4I4(L1)2] (1), [Cu4I4(L2)]n (2) and [Cu4I4(L3)]n·2n(CH3CN) (3) and two linear Zn(II) coordination polymers [ZnCl2(L1)]n (4) and [ZnCl2(L3)]n (5) with 2-pyridyl-triazole ligands (L1 = 2-((4-propyl-1H-1,2,3-triazol-1-yl)methyl)pyridine, L2 = 1,3-bis(1-(pyridin-2-ylmethyl)-1H-1,2,3-triazol-4-yl)propane and L3 = 1,4-bis(1-(pyridin-2-ylmethyl)-1H-1,2,3-triazol-4-yl)butane) have been synthesized and characterized by single-crystal X-ray diffraction (XRD), powder XRD, thermogravimetric analysis and photoluminescence spectroscopy. Complex 1 possesses a stair-step [Cu4I4] cluster structure. Complexes 2 and 3 are 1-D polymeric forms of [Cu4I4] clusters. Complexes 4 and 5 are 1-D Zn(II) polymeric structures bridged by L1 and L3 spacers, respectively. In 1–3, ligands L1–L3 adopt a bidentate/monodentate dual coordination mode through the assistance of the triazole and pyridyl nitrogen donors. Ligand L1 exhibits an unusual open-bridging mode in complex 4, employing Npy and 3′-Ntri donors. By comparison, ligand L3 bridges two metal centers in complex 5 using 3,3′-Ntri donors. The structural (4-pyridyl- and 2-pyridyl-triazole) and H-bonding interaction effects on the coordination structures are described and discussed. All five complexes exhibit solid-state photoluminescence with maximum emission in the region of 440–490 nm.

[1]  Dietmar Stalke,et al.  Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination , 2015, Journal of applied crystallography.

[2]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[3]  M. Gimeno,et al.  N-Heterocyclic carbene metal complexes: photoluminescence and applications. , 2014, Chemical Society reviews.

[4]  Qiang Sun,et al.  Recent progress in metal-organic complexes for optoelectronic applications. , 2014, Chemical Society reviews.

[5]  Ulrich S Schubert,et al.  Beyond click chemistry - supramolecular interactions of 1,2,3-triazoles. , 2014, Chemical Society reviews.

[6]  Lu Jiang,et al.  Tuning the Zn(II) coordination assembly by adjusting the spacers of 2-pyridylthiomethyl functionalized 1,2,3-triazoles , 2013 .

[7]  Chunhua Yan,et al.  Dinuclear Cu(ii) 1,2,3-Triazole-Bridged Complex with Ferromagnetic Coupling , 2013 .

[8]  J. Zuo,et al.  Hybrid NS ligands supported Cu(I)/(II) complexes for azide-alkyne cycloaddition reactions. , 2013, Dalton transactions.

[9]  Lu Jiang,et al.  "Click-and-click"--hybridised 1,2,3-triazoles supported Cu(I) coordination polymers for azide-alkyne cycloaddition. , 2013, Dalton transactions.

[10]  Mingyan Wu,et al.  A multi-metal-cluster MOF with Cu4I4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character , 2013 .

[11]  Zijian Guo,et al.  Metal coordination in photoluminescent sensing. , 2013, Chemical Society reviews.

[12]  R. Bertani,et al.  Synthesis, characterization and low temperature self assembling of (η3-allyl)palladium complexes with 2-pyridyl-1,2,3-triazole bidentate ligands. Study of the catalytic activity in Suzuki-Miyaura reaction , 2012 .

[13]  K. K. Lo,et al.  Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes. , 2012, Dalton transactions.

[14]  Lei Zhu,et al.  Structurally diverse copper(II) complexes of polyaza ligands containing 1,2,3-triazoles: site selectivity and magnetic properties. , 2012, Inorganic chemistry.

[15]  J. Zuo,et al.  Zinc, cobalt and copper coordination polymers with different structural motifs from picolyl-triazole hybrid ligands , 2012 .

[16]  D. A. McMorran,et al.  “Click-Triazole” Coordination Chemistry: Exploiting 1,4-Disubstituted-1,2,3-Triazoles as Ligands , 2012 .

[17]  Biprajit Sarkar,et al.  Mit Klick zu neuen Liganden , 2011 .

[18]  I. Turel,et al.  Pyridyl Conjugated 1,2,3-Triazole is a Versatile Coordination Ability Ligand Enabling Supramolecular Associations , 2010 .

[19]  I. Turel,et al.  Click-triazole N2 coordination to transition-metal ions is assisted by a pendant pyridine substituent. , 2010, Inorganic chemistry.

[20]  Jason E Hein,et al.  Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. , 2010, Chemical Society reviews.

[21]  J. Zuo,et al.  Crystallographic Elucidation of Chiral and Helical Cu(II) Polymers Assembled from a Heterodifunctional 1,2,3-Triazole Ligand† , 2010 .

[22]  D. Young,et al.  Functionalized 1,2,3-triazoles as building blocks for photoluminescent POLOs (polymers of oligomers) of copper(I). , 2010, Dalton transactions.

[23]  Richard Eisenberg,et al.  Tetranuclear copper(I) iodide complexes of chelating bis(1-benzyl-1H-1,2,3-triazole) ligands: structural characterization and solid state photoluminescence. , 2010, Inorganic chemistry.

[24]  R. Schibli,et al.  Metal chelating systems synthesized using the copper(I) catalyzed azide-alkyne cycloaddition. , 2010, Dalton transactions.

[25]  Pauline H. Bandeen,et al.  A multicomponent CuAAC "click" approach to a library of hybrid polydentate 2-pyridyl-1,2,3-triazole ligands: new building blocks for the generation of metallosupramolecular architectures. , 2010, Dalton transactions.

[26]  Pauline H. Bandeen,et al.  A one pot multi-component CuAAC “click” approach to bidentate and tridentate pyridyl-1,2,3-triazole ligands: Synthesis, X-ray structures and copper(II) and silver(I) complexes , 2010 .

[27]  Lei Zhu,et al.  Apparent copper(II)-accelerated azide-alkyne cycloaddition. , 2009, Organic letters.

[28]  T. Hor,et al.  Spacer-directed coordination polymers-of-oligomers (POLO) of silver. , 2008, Inorganic chemistry.

[29]  J. Lang,et al.  Solvent Effects on the Assembly of [Cu2I2]- or [Cu4I4]-Based Coordination Polymers: Isolation, Structures, and Luminescent Properties , 2008 .

[30]  Morten Meldal,et al.  Cu-catalyzed azide-alkyne cycloaddition. , 2008, Chemical reviews.

[31]  F. De Angelis,et al.  Electronic transitions involved in the absorption spectrum and dual luminescence of tetranuclear cubane [Cu4I4(pyridine)4] cluster: a density functional theory/time-dependent density functional theory investigation. , 2006, Inorganic chemistry.

[32]  T. Mak,et al.  Reactivity of pyridyl-1-azaallyl germanium(II) chloride : Synthesis of novel lithium germinate [{(PhC≡C)3Ge}3GeLi(Et2O)3] and Ge(II)-M(I) (M = Cu and Au) adducts , 2006 .

[33]  T. Gunnlaugsson,et al.  Responsive lanthanide luminescent cyclen complexes: from switching/sensing to supramolecular architectures. , 2005, Chemical communications.

[34]  C. H. Arnby,et al.  Questions for crystal engineering of halocuprate complexes: concepts for a difficult system , 2004 .

[35]  M. P. Suh,et al.  A robust porous material constructed of linear coordination polymer chains: reversible single-crystal to single-crystal transformations upon dehydration and rehydration. , 2004, Angewandte Chemie.

[36]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[37]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[38]  M. Vitale Luminescent mixed ligand copper(I) clusters (CuI)n(L)m (L=pyridine, piperidine): thermodynamic control of molecular and supramolecular species , 2001 .

[39]  Vivian Wing-Wah Yam,et al.  Luminescent polynuclear d10 metal complexes , 1999 .

[40]  A. J. Blake,et al.  Copper(I) halide supramolecular networks linked by N-heterocyclic donor bridging ligands , 1998 .