Understanding Voltage Gating of Providencia stuartii Porins at Atomic Level

Bacterial porins are water-filled β-barrel channels that allow translocation of solutes across the outer membrane. They feature a constriction zone, contributed by the plunging of extracellular loop 3 (L3) into the channel lumen. Porins are generally in the open state, but undergo gating in response to external voltages. To date the underlying mechanism is unclear. Here we report results from molecular dynamics simulations on the two porins of Providenica stuartii, Omp-Pst1 and Omp-Pst2, which display distinct voltage sensitivities. Voltage gating was observed in Omp-Pst2, where the binding of cations in-between L3 and the barrel wall results in exposing a conserved aromatic residue in the channel lumen, thereby halting ion permeation. Comparison of Omp-Pst1 and Omp-Pst2 structures and trajectories suggests that their sensitivity to voltage is encoded in the hydrogen-bonding network anchoring L3 onto the barrel wall, as we observed that it is the strength of this network that governs the probability of cations binding behind L3. That Omp-Pst2 gating is observed only when ions flow against the electrostatic potential gradient of the channel furthermore suggests a possible role for this porin in the regulation of charge distribution across the outer membrane and bacterial homeostasis.

[1]  H. Nikaido,et al.  Porin channels in intact cells of Escherichia coli are not affected by Donnan potentials across the outer membrane. , 1988, The Journal of biological chemistry.

[2]  R. Benz,et al.  Role of the central arginine R133 toward the ion selectivity of the phosphate specific channel OprP: effects of charge and solvation. , 2013, Biochemistry.

[3]  E. Lea,et al.  Characterisation of the porin of Rhodobacter capsulatus 37b4 in planar lipid bilayers , 1994, FEBS letters.

[4]  J. Adler,et al.  Membrane‐derived oligosaccharides (MDO's) promote closing of an E. coli porin channel , 1992, FEBS letters.

[5]  J. Faraudo,et al.  Ionic partition and transport in multi-ionic channels: a molecular dynamics simulation study of the OmpF bacterial porin. , 2010, Biophysical journal.

[6]  Oliver Beckstein,et al.  The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores , 2004, Physical biology.

[7]  J. Lakey,et al.  The voltage-dependent activity of Escherichia coli porins in different planar bilayer reconstitutions. , 1989, European journal of biochemistry.

[8]  A. Delcour,et al.  Deletions of single extracellular loops affect pH sensitivity, but not voltage dependence, of the Escherichia coli porin OmpF. , 2004, Protein engineering, design & selection : PEDS.

[9]  M Montal,et al.  Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Winterhalter,et al.  Comparing the temperature-dependent conductance of the two structurally similar E. coli porins OmpC and OmpF. , 2010, Biophysical journal.

[11]  W. Im,et al.  Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. , 2002, Journal of molecular biology.

[12]  Ichiro Yamato,et al.  Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation. , 2003, Biophysical chemistry.

[13]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[14]  B. Roux The membrane potential and its representation by a constant electric field in computer simulations. , 2008, Biophysical journal.

[15]  J. Bovy,et al.  Data analysis recipes: Fitting a model to data , 2010, 1008.4686.

[16]  Alexander D. MacKerell,et al.  Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. , 1997, Biophysical journal.

[17]  E. Jakobsson,et al.  The influence of amino acid protonation states on molecular dynamics simulations of the bacterial porin OmpF. , 2006, Biophysical journal.

[18]  W. Welte,et al.  Influence of the lipid matrix on incorporation and function of LPS-free porin from Paracoccus denitrificans. , 1994, Biochimica et biophysica acta.

[19]  P. Phale,et al.  Voltage gating of Escherichia coli porin channels: role of the constriction loop. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Paola Storici,et al.  Crystal structure of osmoporin OmpC from E. coli at 2.0 A. , 2006, Journal of molecular biology.

[21]  J. Rosenbusch,et al.  Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation. , 2001, Biochemistry.

[22]  K. Schulten,et al.  Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. , 2005, Biophysical journal.

[23]  R. Benz,et al.  Modeling the Ion Selectivity of the Phosphate Specific Channel OprP. , 2012, The journal of physical chemistry letters.

[24]  A. Laio,et al.  Predicting crystal structures: the Parrinello-Rahman method revisited. , 2002, Physical review letters.

[25]  H. Engelhardt,et al.  Voltage-dependent Closing of Porin Channels: Analysis of Relaxation Kinetics , 1998, The Journal of Membrane Biology.

[26]  H. Tien,et al.  Channel-closing activity of porins from Escherichia coli in bilayer lipid membranes. , 1986, Biochimica et biophysica acta.

[27]  J. Rosenbusch,et al.  Voltage sensing in the PhoE and OmpF outer membrane porins of Escherichia coli: role of charged residues. , 1997, Journal of molecular biology.

[28]  J. Lonsdale,et al.  Polarity-dependent voltage-gated porin channels from Escherichia coli in lipid bilayer membranes. , 1990, Biochimica et biophysica acta.

[29]  L. McIntosh,et al.  A protein export pathway involving Escherichia coli porins. , 2012, Structure.

[30]  W. Im,et al.  Theoretical and computational models of biological ion channels , 2004, Quarterly Reviews of Biophysics.

[31]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[32]  A. Delcour,et al.  E.coli PhoE porin has an opposite voltage‐dependence to the homologous OmpF , 1998, The EMBO journal.

[33]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[34]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[35]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[36]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[37]  Eric Hajjar,et al.  Implication of Porins in β-Lactam Resistance of Providencia stuartii* , 2010, The Journal of Biological Chemistry.

[38]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[39]  Christian Kandt,et al.  Setting up and running molecular dynamics simulations of membrane proteins. , 2007, Methods.

[40]  J. Pagés,et al.  Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. , 2002, The Biochemical journal.

[41]  S. Bezrukov,et al.  Residue ionization and ion transport through OmpF channels. , 2003, Biophysical journal.

[42]  J. Tommassen,et al.  Role of the constriction loop in the gating of outer membrane porin PhoE of Escherichia coli , 1997, FEBS letters.

[43]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[44]  J. Lakey,et al.  Voltage-gating of Escherichia coli porin: a cystine-scanning mutagenesis study of loop 3. , 1998, Journal of molecular biology.

[45]  M. Winterhalter,et al.  Understanding ion conductance on a molecular level: an all-atom modeling of the bacterial porin OmpF. , 2009, Biophysical journal.

[46]  H. Berendsen,et al.  A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[47]  Benoît Roux Computational electrophysiology: the molecular dynamics of ion channel permeation and selectivity in atomistic detail. , 2011 .

[48]  M. Besnard,et al.  Electrophysiological Characteristics of the PhoE Porin Channel from Escherichia coli. Implications for the Possible Existence of a Superfamily of Ion Channels , 1997, The Journal of Membrane Biology.

[49]  C. Pineau,et al.  Proteomic studies highlight outer‐membrane proteins related to biofilm development in the marine bacterium Pseudoalteromonas sp. D41 , 2012, Proteomics.

[50]  A. Morita Free Energy Calculation , 2013 .

[51]  W. Im,et al.  Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. , 2002, Journal of molecular biology.

[52]  A. Delcour,et al.  Subconductance states in OmpF gating. , 2004, Biochimica et biophysica acta.

[53]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[54]  G. Rummel,et al.  Crystal structures explain functional properties of two E. coli porins , 1992, Nature.

[55]  C. Houssin,et al.  Fast and slow kinetics of porin channels from Escherichia coli reconstituted into giant liposomes and studied by patch‐clamp , 1992, FEBS letters.

[56]  E. McGroarty,et al.  Acid pH decreases OmpF and OmpC channel size in vivo. , 1992, Biochemical and biophysical research communications.

[57]  A. Karshikoff,et al.  Electrostatic properties of two porin channels from Escherichia coli. , 1994, Journal of molecular biology.

[58]  N. Saint,et al.  Structural and Functional Characterization of OmpF Porin Mutants Selected for Larger Pore Size , 1996, The Journal of Biological Chemistry.