Forest Modeling For Height Inversion Using Single-Baseline InSAR/Pol-InSAR Data

The Random Volume over Ground (RVoG) model has been extensively applied to polarimetric synthetic aperture radar interferometry (Pol-InSAR) data for forest height inversion. The model assumes forest as a homogeneous volume of randomly oriented particles characterized by a constant extinction but does not take into account the forest vertical heterogeneity, to which interferometric coherence is sensitive. In order to integrate vertical heterogeneity in forest models, two complementary models, which take into consideration the forest natural structure, are investigated through analysis of volume interferometric coherence. The first model assumes a vertically varying extinction in the volume layer, and the second model considers predominant contributions localized in a finite height interval, modeled as a Gaussian-distributed backscatter. The two forest models are compared with constant extinction RVoG in the coherence and interferometric phase aspects. Finally, the contribution of these new models for forest height inversion using the Pol-InSAR technique is discussed in the context of a two-layer ground + canopy medium.

[1]  Irena Hajnsek,et al.  Multi-frequency PolInSAR signatures of a subpolar glacier , 2007 .

[2]  Irena Hajnsek,et al.  Forest Parameter Estimation in Tropical Forests by means of Pol-InSAR: Evaluation on the INDREX II Campaign , 2007 .

[3]  Irena Hajnsek,et al.  Biomass estimation from polarimetric SAR interferometry over heterogeneous forest terrain , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[4]  João Roberto dos Santos,et al.  Tropical-Forest Density Profiles from Multibaseline Interferometric SAR , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[5]  Alberto Moreira,et al.  First demonstration of airborne SAR tomography using multibaseline L-band data , 2000, IEEE Trans. Geosci. Remote. Sens..

[6]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[7]  Pascale Dubois-Fernandez,et al.  Polar and PolInSAR analysis of pine forest at L and P band on high resolution data , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[8]  Konstantinos Papathanassiou,et al.  Pine Forest Height Inversion Using Single-Pass X-Band PolInSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Juan M. Lopez-Sanchez,et al.  Model Limitations and Parameter-Estimation Methods for Agricultural Applications of Polarimetric SAR Interferometry , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Irena Hajnsek,et al.  Applying a common allometric equation to convert forest height from Pol-InSAR data to forest biomass , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[11]  Thuy Le Toan,et al.  Estimation of the Backscatter Vertical Profile of a Pine Forest Using Single Baseline P-Band (Pol-)InSAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[13]  Thuy Le Toan,et al.  Deriving forest canopy parameters for backscatter models using the AMAP architectural plant model , 2001, IEEE Trans. Geosci. Remote. Sens..

[14]  J. Kong,et al.  Retrieval of forest biomass from SAR data , 1994 .

[15]  Pascale Dubois-Fernandez,et al.  Forest Height Inversion Using High-Resolution P-Band Pol-InSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[16]  S. Cloude Polarization coherence tomography , 2006 .

[17]  Maurizio Santoro,et al.  Multitemporal repeat pass SAR interferometry of boreal forests , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Shane Cloude,et al.  The structure of oriented vegetation from polarimetric interferometry , 1999, IEEE Trans. Geosci. Remote. Sens..

[19]  B. Law,et al.  Forest Attributes from Radar Interferometric Structure and Its Fusion with Optical Remote Sensing , 2004 .

[20]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[21]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[22]  Iain H. Woodhouse On the vertical distribution of backscatter from a forest canopy for improving polinsar retrievals , 2007 .

[23]  Sébastien Angélliaume,et al.  The Compact Polarimetry Alternative for Spaceborne SAR at Low Frequency , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Thuy Le Toan,et al.  Measurements and modeling of vertical backscatter distribution in forest canopy , 2000, IEEE Trans. Geosci. Remote. Sens..

[25]  Guoqing Sun,et al.  Mapping biomass of a northern forest using multifrequency SAR data , 1994, IEEE Trans. Geosci. Remote. Sens..

[26]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[27]  S. Cloude,et al.  Three-stage inversion process for polarimetric SAR interferometry , 2003 .

[28]  Irena Hajnsek,et al.  Differential Extinction Estimation over Agricultural Vegetation from Pol-InSAR , 2005 .

[29]  Ballester Berman,et al.  Retrieval of biophysical parameters of agricultural crops using polarimetric sar interferometry , 2011 .