Critical nuclear charges for N‐electron atoms

One-particle model with a spherically-symmetric screened Coulomb potential is proposed to describe the motion of a loosely bound electron in a multielectron atom when the nuclear charge, which is treated as a continuous parameter, approaches its critical value. The critical nuclear charge, Z , is the minimum charge necessary to bind c N electrons. Parameters of the model are chosen to meet known binding energies of the neutral atom and the isoelectronic negative ion. This model correctly describes the asymptotic behavior of the binding energy in the vicinity of the critical charge, gives accurate estimation of the critical charges in comparison with ab initio calculations for small atoms, and is in full agreement with the prediction of the statistical theory of large atoms. Our results rule out the stability of doubly charged atomic negative ions in the gas phase. Moreover, the critical charge obeys the proposed inequality, N y 2 F Z F c N y 1. We show that in the presence of a strong magnetic field many atomic dianions become stable. Q 1999 John Wiley & Sons, Inc. Int J Quant Chem 75: 533)542, 1999

[1]  Lai‐Sheng Wang,et al.  Photodetachment Spectroscopy of a Doubly Charged Anion: Direct Observation of the Repulsive Coulomb Barrier , 1998 .

[2]  S. Kais,et al.  Electronic Structure Critical Parameters For the Lithium Isoelectronic Series , 1998 .

[3]  S. Kais,et al.  Critical parameters for the heliumlike atoms: A phenomenological renormalization study , 1998 .

[4]  H. Hogreve LETTER TO THE EDITOR: On the maximal electronic charge bound by atomic nuclei , 1998 .

[5]  S. Kais,et al.  Finite-size scaling approach for the Schrödinger equation , 1998 .

[6]  S. Kais,et al.  Electronic Structure Critical Parameters From Finite-Size Scaling , 1997 .

[7]  M. Garwan,et al.  A negative ion survey; towards the completion of the periodic table of the negative ions , 1997 .

[8]  S. Kais,et al.  Phase transitions for N-electron atoms at the large-dimension limit , 1997 .

[9]  A. Rau The negative ion of hydrogen , 1996 .

[10]  S. Kais,et al.  Critical Phenomena for Electronic Structure at the Large-Dimension Limit. , 1996, Physical review letters.

[11]  E. Davidson,et al.  Refinement of the Asymptotic Z Expansion for the Ground-State Correlation Energies of Atomic Ions , 1996 .

[12]  D. Herschbach DIMENSIONAL SCALING AND RENORMALIZATION , 1996 .

[13]  L. Cederbaum,et al.  Gas-Phase Multiply Charged Anions , 1995, Science.

[14]  Paul,et al.  Electron affinity of strontium. , 1995, Physical Review Letters.

[15]  Davidson,et al.  Ground-state correlation energies for atomic ions with 3 to 18 electrons. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[16]  D. Herschbach,et al.  Dimensional Scaling in Chemical Physics , 1993 .

[17]  J. Ackermann,et al.  On the metastability of the 1 Sigma +g ground state of He2+2 and Ne2+2: a case study of binding metamorphosis , 1992 .

[18]  E. Castro,et al.  Critical screening parameters for screened Coulomb potentials , 1991 .

[19]  Chen,et al.  Lower bounds on the ground-state energy and necessary conditions for the existence of bound states: The few-body problem. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[20]  Morgan,et al.  Radius of convergence and analytic behavior of the 1/Z expansion. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[21]  D. R. Bates Negative Ions: Structure and Spectra , 1990 .

[22]  Vladimir Privman,et al.  Finite Size Scaling and Numerical Simulation of Statistical Systems , 1990 .

[23]  Y. P. Varshni,et al.  Improved Rayleigh-Schrodinger perturbation theory for the bound states of the Hellmann potential , 1987 .

[24]  Bernard J. Laurenzi,et al.  Critical phenomena in isoelectronic diatomic sequences—the 14‐electron sequence , 1986 .

[25]  Adamowski Bound eigenstates for the superposition of the Coulomb and the Yukawa potentials. , 1985, Physical review. A, General physics.

[26]  E. Lieb Atomic and Molecular Negative Ions , 1984 .

[27]  E. Lieb Bound on the maximum negative ionization of atoms and molecules , 1984 .

[28]  J. Perdew,et al.  Calculated electron affinities of the elements , 1982 .

[29]  W. Reinhardt Dilatation analyticity and the radius of convergence of the 1/Z perturbation expansion: Comment on a conjecture of Stillinger , 1977 .

[30]  John A. Hertz,et al.  Quantum critical phenomena , 1976 .

[31]  W. C. Lineberger,et al.  Binding energies in atomic negative ions , 1975 .

[32]  F. Stillinger,et al.  Energy and lifetime of O2− from analytic continuation of isoelectronic bound states , 1975 .

[33]  F. Stillinger,et al.  Role of electron correlation in determining the binding limit for two-electron atoms , 1974 .

[34]  F. Stillinger,et al.  Nonlinear variational study of perturbation theory for atoms and ions , 1974 .

[35]  G. Zhislin On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions , 1971 .

[36]  F. Stillinger Ground‐State Energy of Two‐Electron Atoms , 1966 .

[37]  Tosio Kato On the existence of solutions of the helium wave equation , 1951 .

[38]  H. Hellmann,et al.  A New Approximation Method in the Problem of Many Electrons , 1935 .