A Procedure Model for the Credible Measurability of Data Warehouse Metrics on Discrete-event Simulation Models of Logistics Systems

This paper presents a new procedure model for the credible measurability of data warehouse key performance indicators on simulation models of discreteevent logistics systems. The basis for the new procedure model was the procedure model of information acquisition by Bernhard and Wenzel (2005). The new model consists of two parts, an input data management and an output data management. The complete procedure model has been integrated into the procedure model for simulation including V&V by Rabe et al. (2008b). Furthermore, a concept for a control software for the automated processing of the input and output data has been developed and is presented in this paper.

[1]  S. Vincent Input Data Analysis , 2007 .

[3]  Stephan Onggo,et al.  Data identification and collection methodology in a simulation project: An action research , 2012 .

[4]  Sigrid Wenzel,et al.  Verifikation und Validierung für die Simulation in Produktion und Logistik - Vorgehensmodelle und Techniken , 2008 .

[5]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[6]  Holger Günzel,et al.  Data-Warehouse-Systeme: Architektur, Entwicklung, Anwendung , 2005 .

[7]  S. Wenzel,et al.  Methodennutzungsmodell zur Informationsgewinnung in großen Netzen der Logistik , 2009 .

[8]  James Hill,et al.  Data identification and data collection methods in simulation: a case study at ORH Ltd , 2014, J. Simulation.

[9]  Jerry Banks The future of simulation software: a panel discussion , 1998, WSC '98.

[10]  Charles R. McLean,et al.  Input Data Management methodology for Discrete Event Simulation , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[11]  Gautam Mitra,et al.  Adapting on-line analytical processing for decision modelling: the interaction of information and decision technologies , 1999, Decis. Support Syst..

[12]  Leon F. McGinnis Technical and Conceptual Challenges in Organizational Simulation , 2005 .

[13]  Sonja Kuhnt,et al.  Vorgehensmodell zur Informationsgewinnung – Prozessschritte und Methodennutzung - , 2007 .

[14]  Sigrid Wenzel,et al.  A new procedure model for verification and validation in production and logistics simulation , 2008, 2008 Winter Simulation Conference.

[15]  J. Banks,et al.  Discrete-Event System Simulation , 1995 .

[16]  Peter H. Millard,et al.  A Simulation Model to Evaluate the Interaction between Acute, Rehabilitation, Long Stay Care and the Community , 2000 .

[17]  Panagiotis Chountas,et al.  A data warehouse environment for storing and analyzing simulation output data , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[18]  Ulla Seppala,et al.  A methodology for data gathering and analysis in a logistics simulation project , 1997 .

[19]  Knut Alicke,et al.  Supply Chain Simulation mit ICON-SimChain , 2004 .

[20]  Björn Johansson,et al.  A methodology for input data management in discrete event simulation projects , 2008, 2008 Winter Simulation Conference.

[21]  Jan Fabian Ehmke,et al.  Interactive analysis of discrete-event logistics systems with support of a data warehouse , 2011, Comput. Ind..

[22]  Celso Leandro Palma,et al.  Simulation: The Practice of Model Development and Use , 2016 .

[23]  Sathiyamoorthi Fundamentals of Data Mining and Data Warehousing , 2017 .

[24]  Michael Pidd,et al.  Computer Simulation in Management Science (3rd Edition) , 1998 .