Bursting oscillations and coexisting attractors in a simple memristor-capacitor-based chaotic circuit

The design and analysis of a simple autonomous memristive chaotic circuit are important in theoretical, numerical, and experimental demonstrations of complex dynamics. In this paper, a simple autonomous memristive circuit is implemented, which only consists of an active second-order memristive diode bridge and a capacitor. Based on the available circuit, the mathematical model is established and its symmetry, dissipativity, and equilibrium stability are analyzed. Numerical simulations show that the proposed circuit exhibits complex behaviors of unipolar periodic and chaotic bursting oscillations along with coexisting attractors. It is worth noting that the circuit exhibits such a special bursting behavior previously unobserved in third-order autonomous memristive circuits. Moreover, spectral entropy complexities are calculated to provide an intuitive and effectual method for the circuit parameter configurations. The circuit simulations and hardware experiments verify the theoretical analyses and numerical simulations.

[1]  Fernando Corinto,et al.  Memristive diode bridge with LCR filter , 2012 .

[2]  C. P. Silva,et al.  Shil'nikov's theorem-a tutorial , 1993 .

[3]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[4]  Lin Teng,et al.  A novel colour image encryption algorithm based on chaos , 2012, Signal Process..

[5]  Robert Tchitnga,et al.  Chaos in a Single Op-Amp–Based Jerk Circuit: Experiments and Simulations , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[6]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[7]  Nabil G. Chalhoub,et al.  Nonlinear robust observer for structures with configuration-dependent natural frequencies: experimental and theoretical results , 2016 .

[8]  Z. Njitacke Tabekoueng,et al.  Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit. , 2015, Chaos.

[9]  Ahmed Alsaedi,et al.  Dynamical Response of Electrical Activities in Digital Neuron Circuit Driven by Autapse , 2017, Int. J. Bifurc. Chaos.

[10]  Bocheng Bao,et al.  Third-order RLCM-four-elements-based chaotic circuit and its coexisting bubbles , 2018, AEU - International Journal of Electronics and Communications.

[11]  Sundarapandian Vaidyanathan,et al.  Advances and Applications in Chaotic Systems , 2016, Studies in Computational Intelligence.

[12]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[13]  Ali Khiat,et al.  Real-time encoding and compression of neuronal spikes by metal-oxide memristors , 2016, Nature Communications.

[14]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[15]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[16]  Erivelton G. Nepomuceno,et al.  Exploiting the rounding mode of floating-point in the simulation of Chua’s circuit , 2018 .

[17]  Julien Clinton Sprott,et al.  Variable-boostable chaotic flows , 2016 .

[18]  Gabriel Okoli,et al.  Studying the dynamics of memristive synapses in spiking neuromorphic systems , 2018, 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus).

[19]  Artur I. Karimov,et al.  Comparing the Finite -Difference Schemes in the Simulation of Shunted Josephson Junctions , 2018, 2018 23rd Conference of Open Innovations Association (FRUCT).

[20]  Jan Danckaert,et al.  Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: theory and electronic implementation , 2013 .

[21]  Julien Clinton Sprott,et al.  Simple Chaotic Flow with Circle and Square Equilibrium , 2016, Int. J. Bifurc. Chaos.

[22]  Bocheng Bao,et al.  Chaotic bursting in memristive diode bridge-coupled Sallen-Key lowpass filter , 2017 .

[23]  Guanrong Chen,et al.  Dynamic Analysis of Digital Chaotic Maps via State-Mapping Networks , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Paul Woafo,et al.  Hartley’s oscillator: The simplest chaotic two-component circuit , 2012 .

[25]  Huagan Wu,et al.  Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator , 2016 .

[26]  Dongdong Lin,et al.  Cryptanalyzing an Image Encryption Algorithm Based on Autoblocking and Electrocardiography , 2017, IEEE MultiMedia.

[27]  Julien Clinton Sprott,et al.  Simple Chaotic Flows with a Curve of Equilibria , 2016, Int. J. Bifurc. Chaos.

[28]  L. Chua,et al.  The simplest dissipative nonautonomous chaotic circuit , 1994 .

[29]  Huagan Wu,et al.  A Simple Third-Order Memristive Band Pass Filter Chaotic Circuit , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[30]  Jun Tang,et al.  A class of initials-dependent dynamical systems , 2017, Appl. Math. Comput..

[31]  Zbigniew Galias,et al.  Study of Amplitude Control and Dynamical Behaviors of a Memristive Band Pass Filter Circuit , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[32]  Leon O. Chua,et al.  Everything You Wish to Know About Memristors But Are Afraid to Ask , 2015 .

[33]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[34]  Bocheng Bao,et al.  Hidden extreme multistability in memristive hyperchaotic system , 2017 .

[35]  Zhisen Wang,et al.  Dynamics analysis of Wien-bridge hyperchaotic memristive circuit system , 2018 .

[36]  Zhong Liu,et al.  Generalized Memristor Consisting of Diode Bridge with First Order Parallel RC Filter , 2014, Int. J. Bifurc. Chaos.

[37]  Han Bao,et al.  Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction , 2018, Nonlinear Dynamics.

[38]  Julien Clinton Sprott,et al.  Simple chaotic systems and circuits , 2000 .

[39]  L. Chua Memristor-The missing circuit element , 1971 .

[40]  Ling Zhou,et al.  Various Attractors, Coexisting Attractors and Antimonotonicity in a Simple Fourth-Order Memristive Twin-T Oscillator , 2018, Int. J. Bifurc. Chaos.

[41]  Lili Zhou,et al.  Generating hyperchaotic multi-wing attractor in a 4D memristive circuit , 2016, Nonlinear Dynamics.

[42]  Ahmed Alsaedi,et al.  Synchronization between neurons coupled by memristor , 2017 .

[43]  Chunhua Wang,et al.  A new simple chaotic circuit based on memristor and meminductor , 2016, The European Physical Journal Plus.

[44]  K. Thamilmaran,et al.  Chaotic dynamics with high complexity in a simplified new nonautonomous nonlinear electronic circuit , 2009 .

[45]  Guangyi Wang,et al.  Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria , 2018, Commun. Nonlinear Sci. Numer. Simul..

[46]  Fuhong Min,et al.  Multistability analysis, circuit implementations and application in image encryption of a novel memristive chaotic circuit , 2017, Nonlinear Dynamics.

[47]  Zhijun Li,et al.  A simple inductor-free memristive circuit with three line equilibria , 2018, Nonlinear Dynamics.

[48]  Julien Clinton Sprott,et al.  A Proposed Standard for the Publication of New Chaotic Systems , 2011, Int. J. Bifurc. Chaos.

[49]  Yicong Zhou,et al.  Sine Chaotification Model for Enhancing Chaos and Its Hardware Implementation , 2019, IEEE Transactions on Industrial Electronics.

[50]  Luigi Fortuna,et al.  Simple Memristive Time-Delay Chaotic Systems , 2013, Int. J. Bifurc. Chaos.

[51]  Julien Clinton Sprott,et al.  A Simple Chaotic Flow with a Plane of Equilibria , 2016, Int. J. Bifurc. Chaos.

[52]  Julien Clinton Sprott,et al.  Simple Autonomous Chaotic Circuits , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[53]  Bocheng Bao,et al.  Multistability induced by two symmetric stable node-foci in modified canonical Chua’s circuit , 2017 .

[54]  Xing-yuan Wang,et al.  A novel image encryption algorithm based on genetic recombination and hyper-chaotic systems , 2015, Nonlinear Dynamics.

[55]  Guanrong Chen,et al.  Diagnosing multistability by offset boosting , 2017 .

[56]  Bocheng Bao,et al.  Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons , 2019, Nonlinear Dynamics.

[57]  Viet-Thanh Pham,et al.  Antimonotonicity, Crisis and Multiple Attractors in a Simple Memristive Circuit , 2018, J. Circuits Syst. Comput..

[58]  Bocheng Bao,et al.  Hidden Bursting Firings and Bifurcation Mechanisms in Memristive Neuron Model With Threshold Electromagnetic Induction , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[59]  Kehui Sun,et al.  Dynamical properties and complexity in fractional-order diffusionless Lorenz system , 2016 .

[60]  Julien Clinton Sprott,et al.  Constructing chaotic systems with conditional symmetry , 2017 .

[61]  Sen Zhang,et al.  A novel simple no-equilibrium chaotic system with complex hidden dynamics , 2018 .

[62]  Christos Volos,et al.  A novel memristive neural network with hidden attractors and its circuitry implementation , 2015, Science China Technological Sciences.

[63]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[64]  Victor Sreeram,et al.  Implementation of an analogue model of a memristor based on a light-dependent resistor , 2012 .