Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative.

Drastic chemical interface plasmon damping is induced by the ultrathin (∼2 nm) titanium (Ti) adhesion layer; alternatively, molecular adhesion is implemented for lithographic fabrication of plasmonic nanostructures without significant distortion of the plasmonic characteristics. As determined from the homogeneous linewidth of the resonance scattering spectrum of individual gold nanorods, an ultrathin Ti layer reduces the plasmon dephasing time significantly, and it reduces the plasmon scattering amplitude drastically. The increased damping rate and decreased plasmon amplitude are due to the dissipative dielectric function of Ti and the chemical interface plasmon damping where the conduction electrons are transferred across the metal-metal interface. In addition, a pronounced red shift due to the Ti adhesion layer, more than predicted using electromagnetic simulation, suggests the prevalence of interfacial reactions. By extending the experiment to conductively coupled ring-rod nanostructures, it is shown that a sharp Fano-like resonance feature is smeared out due to the Ti layer. Alternatively, vapor deposition of (3-mercaptopropyl)trimethoxysilane on gently cleaned and activated lithographic patterns functionalizes the glass surface sufficiently to link the gold nanostructures to the surface by sulfur-gold chemical bonds without observable plasmon damping effects.

[1]  P. Schuck,et al.  Theta-shaped plasmonic nanostructures: bringing "dark" multipole plasmon resonances into action via conductive coupling. , 2011, Nano letters.

[2]  A. Kristensen,et al.  The effect of Ti and ITO adhesion layers on gold split-ring resonators , 2010 .

[3]  F. Träger,et al.  Damping of the localized surface plasmon polariton resonance of gold nanoparticles , 2010 .

[4]  Basudev Lahiri,et al.  Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (SRRs). , 2010, Optics express.

[5]  Dror Sarid,et al.  Modern Introduction to Surface Plasmons: Applications , 2010 .

[6]  T. Ebbesen,et al.  Crucial role of the adhesion layer on the plasmonic fluorescence enhancement. , 2009, ACS nano.

[7]  X. Jiao,et al.  Localization of Near-Field Resonances in Bowtie Antennae: Influence of Adhesion Layers , 2009 .

[8]  U. Kreibig,et al.  Interface-induced dephasing of Mie plasmon polaritons , 2008 .

[9]  B. Sexton,et al.  Characterisation of gold surface plasmon resonance sensor substrates , 2008 .

[10]  David B. Janes,et al.  Gold surface with sub-nm roughness realized by evaporation on a molecular adhesion monolayer , 2006 .

[11]  Wolfgang Knoll,et al.  Influence of the Metal Film Thickness on the Sensitivity of Surface Plasmon Resonance Biosensors , 2005, Applied spectroscopy.

[12]  R. Pafchek,et al.  Effect of Chromium–Gold and Titanium–Titanium Nitride–Platinum–Gold Metallization on Wire/Ribbon Bondability , 2006, IEEE Transactions on Advanced Packaging.

[13]  U. Kreibig,et al.  Influence of interband electronic transitions on the optical absorption in metallic nanoparticles , 2004 .

[14]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[15]  Thomas A. Klar,et al.  Surface-Plasmon Resonances in Single Metallic Nanoparticles , 1998 .

[16]  H. Craighead,et al.  Electron-Beam-Induced Damage in Self-Assembled Monolayers , 1996 .

[17]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[18]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[19]  Vollmer,et al.  Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. , 1993, Physical review. B, Condensed matter.

[20]  Bo N. J. Persson,et al.  Polarizability of small spherical metal particles : influence of the matrix environment , 1993 .

[21]  C. Goss,et al.  Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates , 1991 .

[22]  H. Lehmann,et al.  Optimizing deposition parameters of electron beam evaporated TiO(2) films. , 1988, Applied optics.

[23]  R. Hochstrasser,et al.  Nonlinear spectroscopy and picosecond transient grating study of colloidal gold , 1985 .

[24]  P. Apell,et al.  Effective relaxation time in small spheres: Diffuse surface scattering , 1984 .

[25]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[26]  James P. Gordon,et al.  Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .

[27]  Richard K. Chang,et al.  Local fields at the surface of noble-metal microspheres , 1981 .

[28]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[29]  T. Tisone,et al.  Diffusion in Thin Film Ti–Au, Ti–Pd, and Ti–Pt Couples , 1972 .

[30]  M. P. Lepselter Beam-lead technology , 1966 .

[31]  Klaus Fuchs,et al.  The conductivity of thin metallic films according to the electron theory of metals , 1938, Mathematical Proceedings of the Cambridge Philosophical Society.