Small RNA-mediated transgenerational silencing of histone genes impairs fertility in piRNA mutants

[1]  Ben Lehner,et al.  Intergenerational and transgenerational epigenetic inheritance in animals , 2019, Nature Cell Biology.

[2]  Deniz M. Ozata,et al.  PIWI-interacting RNAs: small RNAs with big functions , 2018, Nature Reviews Genetics.

[3]  Z. Weng,et al.  An Evolutionarily Conserved piRNA-producing Locus Required for Male Mouse Fertility , 2018 .

[4]  E. Miska,et al.  Natural Genetic Variation in a Multigenerational Phenotype in C. elegans , 2018, Current Biology.

[5]  Gang Wan,et al.  Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance , 2018, Nature.

[6]  Stephen Frenk,et al.  Transgenerational Sterility of Piwi Mutants Represents a Dynamic Form of Adult Reproductive Diapause , 2018, Cell reports.

[7]  Zhiping Weng,et al.  A Sex Chromosome piRNA Promotes Robust Dosage Compensation and Sex Determination in C. elegans. , 2018, Developmental cell.

[8]  Shikui Tu,et al.  Identification of piRNA Binding Sites Reveals the Argonaute Regulatory Landscape of the C. elegans Germline , 2018, Cell.

[9]  Zhiping Weng,et al.  The piRNA targeting rules and the resistance to piRNA silencing in endogenous genes , 2018, Science.

[10]  Z. Weng,et al.  The Coding Regions of Germline mRNAs Confer Sensitivity to Argonaute Regulation in C. elegans , 2018, Cell reports.

[11]  Xiang-Dong Fu,et al.  Ubiquitination-Deficient Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis , 2017, Cell.

[12]  Scott Kennedy,et al.  The RNAi Inheritance Machinery of Caenorhabditis elegans , 2017, Genetics.

[13]  Przemyslaw Stempor,et al.  A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress , 2017, bioRxiv.

[14]  S. Gasser,et al.  Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability , 2016, Nature Genetics.

[15]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[16]  Gene W. Yeo,et al.  A Small RNA-Catalytic Argonaute Pathway Tunes Germline Transcript Levels to Ensure Embryonic Divisions , 2016, Cell.

[17]  Uri Alon,et al.  A Tunable Mechanism Determines the Duration of the Transgenerational Small RNA Inheritance in C. elegans , 2016, Cell.

[18]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2016, Nucleic Acids Res..

[19]  Dubravka Pezic,et al.  The piRNA Pathway Guards the Germline Genome Against Transposable Elements. , 2016, Advances in experimental medicine and biology.

[20]  R. Ketting,et al.  Maternal piRNAs Are Essential for Germline Development following De Novo Establishment of Endo-siRNAs in Caenorhabditis elegans. , 2015, Developmental cell.

[21]  Kristen C. Brown,et al.  piRNAs and piRNA-Dependent siRNAs Protect Conserved and Essential C. elegans Genes from Misrouting into the RNAi Pathway. , 2015, Developmental cell.

[22]  Andrew W. Folkmann,et al.  High Efficiency, Homology-Directed Genome Editing in Caenorhabditis elegans Using CRISPR-Cas9 Ribonucleoprotein Complexes , 2015, Genetics.

[23]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[24]  E. Miska,et al.  Ancient and Novel Small RNA Pathways Compensate for the Loss of piRNAs in Multiple Independent Nematode Lineages , 2015, PLoS biology.

[25]  Z. Weng,et al.  Comparative functional characterization of the CSR-1 22G-RNA pathway in Caenorhabditis nematodes , 2014, Nucleic acids research.

[26]  S. Gu,et al.  Complex coding of endogenous siRNA, transcriptional silencing and H3K9 methylation on native targets of germline nuclear RNAi in C. elegans , 2014, BMC Genomics.

[27]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[28]  Ben Lehner,et al.  Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR. , 2014, Cell reports.

[29]  A. Quinlan BEDTools: The Swiss‐Army Tool for Genome Feature Analysis , 2014, Current protocols in bioinformatics.

[30]  Joshua A. Arribere,et al.  Efficient Marker-Free Recovery of Custom Genetic Modifications with CRISPR/Cas9 in Caenorhabditis elegans , 2014, Genetics.

[31]  Leonard D. Goldstein,et al.  Reduced insulin/IGF-1 signaling restores germ cell immortality to Caenorhabditis elegans Piwi mutants. , 2014, Cell reports.

[32]  C. Mello,et al.  The Vasa Homolog RDE-12 Engages Target mRNA and Multiple Argonaute Proteins to Promote RNAi in C. elegans , 2014, Current Biology.

[33]  J. Ahringer,et al.  PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans , 2014, Genes & development.

[34]  R. Sachidanandam,et al.  Global effects of the CSR-1 RNA interference pathway on transcriptional landscape , 2014, Nature Structural &Molecular Biology.

[35]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[36]  C. Mello,et al.  The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. , 2013, Developmental cell.

[37]  Julie M. Claycomb,et al.  Protection of germline gene expression by the C. elegans Argonaute CSR-1. , 2013, Developmental cell.

[38]  C. Mello,et al.  CapSeq and CIP-TAP Identify Pol II Start Sites and Reveal Capped Small RNAs as C. elegans piRNA Precursors , 2012, Cell.

[39]  S. Palani,et al.  CSR‐1 RNAi pathway positively regulates histone expression in C. elegans , 2012, The EMBO journal.

[40]  Martin J. Simard,et al.  Function, Targets, and Evolution of Caenorhabditis elegans piRNAs , 2012, Science.

[41]  Scott Kennedy,et al.  A nuclear Argonaute promotes multi-generational epigenetic inheritance and germline immortality , 2012, Nature.

[42]  Richard S. Sandstrom,et al.  BEDOPS: high-performance genomic feature operations , 2012, Bioinform..

[43]  Weifeng Gu,et al.  C. elegans piRNAs Mediate the Genome-wide Surveillance of Germline Transcripts , 2012, Cell.

[44]  C. Mello,et al.  piRNAs Initiate an Epigenetic Memory of Nonself RNA in the C. elegans Germline , 2012, Cell.

[45]  K. Klymko,et al.  Promoters recognized by forkhead proteins exist for individual 21U-RNAs. , 2012, Molecular cell.

[46]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[47]  R. Sachidanandam,et al.  Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing , 2011, Nucleic acids research.

[48]  Olivier Langella,et al.  MassChroQ: A versatile tool for mass spectrometry quantification , 2011, Proteomics.

[49]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[50]  Harrison W. Gabel,et al.  mut-16 and other mutator class genes modulate 22G and 26G siRNA pathways in Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[51]  Pedro J. Batista,et al.  Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. , 2009, Molecular cell.

[52]  Haifan Lin,et al.  The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. , 2009, Annual review of cell and developmental biology.

[53]  Pedro J. Batista,et al.  The Argonaute CSR-1 and Its 22G-RNA Cofactors Are Required for Holocentric Chromosome Segregation , 2009, Cell.

[54]  W. G. Kelly,et al.  A C. elegans LSD1 Demethylase Contributes to Germline Immortality by Reprogramming Epigenetic Memory , 2009, Cell.

[55]  Eugene Berezikov,et al.  Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. , 2008, Molecular cell.

[56]  Pedro J. Batista,et al.  PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. , 2008, Molecular cell.

[57]  V. Reinke,et al.  DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells , 2008, Development.

[58]  Michael L. Creech,et al.  Integration of biological networks and gene expression data using Cytoscape , 2007, Nature Protocols.

[59]  Emmanuel Barillot,et al.  myProMS, a web server for management and validation of mass spectrometry‐based proteomic data , 2007, Proteomics.

[60]  J. Pettitt,et al.  Histone gene expression and histone mRNA 3' end structure in Caenorhabditis elegans , 2007, BMC Molecular Biology.

[61]  Christopher M. Player,et al.  Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans , 2006, Cell.

[62]  S. Strome,et al.  The PGL Family Proteins Associate With Germ Granules and Function Redundantly in Caenorhabditis elegans Germline Development Sequence data from this article have been deposited with the DDBJ/EMBL/GenBank Data Libraries under accession nos. AB120729 and AB120730. , 2004, Genetics.

[63]  R. Kamath,et al.  Genome-wide RNAi screening in Caenorhabditis elegans. , 2003, Methods.

[64]  Catriona Crombie,et al.  The Caenorhabditis elegans histone hairpin-binding protein is required for core histone gene expression and is essential for embryonic and postembryonic cell division. , 2002, Journal of cell science.

[65]  J. Rothman,et al.  The stem-loop binding protein CDL-1 is required for chromosome condensation, progression of cell death and morphogenesis in Caenorhabditis elegans. , 2002, Development.

[66]  D. Schümperli,et al.  Histone H4 mRNA from the nematode Ascaris lumbricoides is cis-spliced and polyadenylated. , 1997, Biochimica et biophysica acta.

[67]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.