Revision of the GROMOS 56A6CARBO force field: Improving the description of ring‐conformational equilibria in hexopyranose‐based carbohydrates chains

This article describes a revised version 56A6CARBO_R of the GROMOS 56A6CARBO force field for hexopyranose‐based carbohydrates. The simulated properties of unfunctionalized hexopyranoses are unaltered with respect to 56A6CARBO. In the context of both O1‐alkylated hexopyranoses and oligosaccharides, the revision stabilizes the regular 4C1 chair for α‐anomers, with the opposite effect for β‐anomers. As a result, spurious ring inversions observed in α(1→4)‐linked chains when using the original 56A6CARBO force field are alleviated. The 4C1 chair is now the most stable conformation for all d‐hexopyranose residues, irrespective of the linkage type and anomery, and of the position of the residue along the chain. The methylation of a d‐hexopyranose leads to a systematic shift in the ring‐inversion free energy (4C1 to 1C4) by 7–8 kJ mol−1, positive for the α‐anomers and negative for the β‐anomers, which is qualitatively compatible with the expected enhancement of the anomeric effect upon methylation at O1. The ring‐inversion free energies for residues within chains are typically smaller in magnitude compared to those of the monomers, and correlate rather poorly with the latter. This suggests that the crowding of ring substituents upon chain formation alters the ring flexibility in a nonsystematic fashion. In general, the description of carbohydrate chains afforded by 56A6CARBO_R suggests a significant extent of ring flexibility, i.e., small but often non‐negligible equilibrium populations of inverted chairs, and challenges the “textbook” picture of conformationally locked carbohydrate rings. © 2015 Wiley Periodicals, Inc.

[1]  Reko Leino,et al.  Conformation of the galactose ring adopted in solution and in crystalline form as determined by experimental and DFT 1H NMR and single-crystal X-ray analysis. , 2004, The Journal of organic chemistry.

[2]  Mark J. Forster,et al.  Molecular dynamics study of iduronate ring conformation , 1993 .

[3]  Frank A. Momany,et al.  DFT study of α- and β-d-mannopyranose at the B3LYP/6-311++G** level , 2005 .

[4]  J. A. Barker,et al.  Monte Carlo studies of the dielectric properties of water-like models , 1973 .

[5]  Christopher B. Barnett,et al.  Ring puckering: a metric for evaluating the accuracy of AM1, PM3, PM3CARB-1, and SCC-DFTB carbohydrate QM/MM simulations. , 2010, The journal of physical chemistry. B.

[6]  P. Hajduk,et al.  Solution dynamics of the 1,2,3,4,6-penta-O-acetyl-α-D-idopyranose ring , 1997, Glycoconjugate Journal.

[7]  Christopher B. Barnett,et al.  Free Energies from Adaptive Reaction Coordinate Forces (FEARCF): an application to ring puckering , 2009 .

[8]  Göran Widmalm,et al.  pKa‐Determination and Conformational Studies by NMR Spectroscopy of D‐Altrose‐Containing and other Pseudodisaccharides as Glycosidase Inhibitor Candidates , 2012 .

[9]  Sajjad Karamat,et al.  Computational study of the conformational space of methyl 2,4-diacetyl-beta-D-xylopyranoside: 4C1 and 1C4 chairs, skew-boats (2SO, 1S3), and B3,O boat forms. , 2006, The journal of physical chemistry. A.

[10]  H. Limbach,et al.  Structure and dynamics of maltooligomer–water solutions and glasses , 2008 .

[11]  D Lamba,et al.  Evidence for a boat-chair equilibrium in the glucuronate residue of chondrosine. , 1991, Carbohydrate research.

[12]  Thomas N Huckerby,et al.  Conformational equilibrium of unsulphated iduronate in heparan sulphate tetrasaccharides , 2005, Glycoconjugate Journal.

[13]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[14]  Mahmoud E S Soliman,et al.  Mechanism of glycoside hydrolysis: A comparative QM/MM molecular dynamics analysis for wild type and Y69F mutant retaining xylanases. , 2009, Organic & biomolecular chemistry.

[15]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[16]  B. Perly,et al.  Conformer populations of L-iduronic acid residues in glycosaminoglycan sequences. , 1990, Carbohydrate research.

[17]  H Sugiyama,et al.  The conformation of alpha-(1-->4)-linked glucose oligomers from maltose to maltoheptaose and short-chain amylose in solution. , 2000, Carbohydrate research.

[18]  Göran Widmalm,et al.  Chair interconversion and reactivity of mannuronic acid esters. , 2013, Organic & biomolecular chemistry.

[19]  Philippe H. Hünenberger,et al.  A reoptimized GROMOS force field for hexopyranose‐based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers , 2011, J. Comput. Chem..

[20]  Momcilo Miljkovic,et al.  Carbohydrates: Synthesis, Mechanisms, and Stereoelectronic Effects , 2009 .

[21]  Philippe H. Hünenberger,et al.  Using the local elevation method to construct optimized umbrella sampling potentials: Calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water , 2010, J. Comput. Chem..

[22]  Wojciech Plazinski,et al.  Kinetic characteristics of conformational changes in the hexopyranose rings. , 2015, Carbohydrate research.

[23]  Wojciech Plazinski,et al.  The influence of the hexopyranose ring geometry on the conformation of glycosidic linkages investigated using molecular dynamics simulations. , 2015, Carbohydrate research.

[24]  Reinhard Lipowsky,et al.  Conformational diversity of O-antigen polysaccharides of the Gram-negative bacterium Shigella flexneri serotype Y. , 2014, The journal of physical chemistry. B.

[25]  Jiali Gao,et al.  AM1/d-CB1: A Semiempirical Model for QM/MM Simulations of Chemical Glycobiology Systems. , 2014, Journal of chemical theory and computation.

[26]  Markus Christen,et al.  Architecture, implementation and parallelisation of the GROMOS software for biomolecular simulation , 2012, Comput. Phys. Commun..

[27]  Ian H. Williams,et al.  Computational mutagenesis reveals the role of active-site tyrosine in stabilising a boat conformation for the substrate: QM/MM molecular dynamics studies of wild-type and mutant xylanases. , 2009, Organic & biomolecular chemistry.

[28]  J. R. Grigera,et al.  On the sweetness properties of aldoses: characterization of molecular active sites by computer simulation , 1996 .

[29]  Alfred D. French,et al.  Disaccharide conformational maps: adiabaticity in analogues with variable ring shapes , 2008 .

[30]  Carlos A. Stortz,et al.  Conformational pathways of simple six-membered rings , 2010 .

[31]  Vojtech Spiwok,et al.  Modelling of beta-D-glucopyranose ring distortion in different force fields: a metadynamics study. , 2010, Carbohydrate research.

[32]  Tim N. Heinz,et al.  Comparison of four methods to compute the dielectric permittivity of liquids from molecular dynamics simulations , 2001 .

[33]  Robert M. Giuliano,et al.  Structure of methyl 6-deoxy-α-d-idopyranoside , 1989 .

[34]  Frank A. Momany,et al.  DFT study of α- and β-d-allopyranose at the B3LYP/6-311++G∗∗ level of theory , 2006 .

[35]  Kevin Cowtan,et al.  Carbohydrate anomalies in the PDB. , 2015, Nature chemical biology.

[36]  H. Berendsen,et al.  Simulations of Proteins in Water a , 1986, Annals of the New York Academy of Sciences.

[37]  G. Guella,et al.  Puckering free energy of pyranoses: A NMR and metadynamics-umbrella sampling investigation. , 2010, The Journal of chemical physics.

[38]  Diego A. Navarro,et al.  Modeling ring puckering in strained systems: application to 3,6-anhydroglycosides. , 2005, Carbohydrate research.

[39]  Gregory S. Tschumper,et al.  Intrinsic conformational preferences of substituted cyclohexanes and tetrahydropyrans evaluated at the CCSD(T) complete basis set limit: implications for the anomeric effect. , 2005, The journal of physical chemistry. A.

[40]  A. McNaught Nomenclature of carbohydrates (IUPAC Recommendations 1996) , 1996, Advances in carbohydrate chemistry and biochemistry.

[41]  Wilfred F. van Gunsteren,et al.  New functionalities in the GROMOS biomolecular simulation software , 2012, J. Comput. Chem..

[42]  Donald G. Truhlar,et al.  Relative stability of alternative chair forms and hydroxymethyl conformations of β-d-glucopyranose , 1995 .

[43]  J. Sheehan,et al.  Glycosaminoglycan conformation: do aqueous molecular dynamics simulations agree with x-ray fiber diffraction? , 2000, Glycobiology.

[44]  Harold Booth,et al.  endo-Anomeric and exo-anomeric effects in 2-substituted tetrahydropyrans , 1985 .

[45]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[46]  B. Coxon,et al.  Boat conformations synthesis, NMR spectroscopy, and molecular dynamics of methyl 4,6-O-benzylidene-3-deoxy-3-phthalimido-alpha-D-altropyranoside derivatives. , 2001, Carbohydrate research.

[47]  Piotr E. Marszalek,et al.  Atomic cranks and levers control sugar ring conformations , 2005 .

[48]  G. Davies,et al.  Mechanistic insights into glycosidase chemistry. , 2008, Current opinion in chemical biology.

[49]  Victor H Rusu,et al.  GROMOS 53A6GLYC, an Improved GROMOS Force Field for Hexopyranose-Based Carbohydrates. , 2012, Journal of chemical theory and computation.

[50]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[51]  Zaida Ann Luthey-Schulten,et al.  Barriers to Forced Transitions in Polysaccharides , 2000 .

[52]  J. D. Stevens,et al.  THE PROTON MAGNETIC RESONANCE SPECTRA AND TAUTOMERIC EQUILIBRIA OF ALDOSES IN DEUTERIUM OXIDE , 1966 .

[53]  Richard G. Haverkamp,et al.  Stretching single polysaccharide molecules using AFM: A potential method for the investigation of the intermolecular uronate distribution of alginate? , 2008 .

[54]  Massimiliano Bonomi,et al.  Free-energy landscape of protein oligomerization from atomistic simulations , 2013, Proceedings of the National Academy of Sciences.

[55]  Kevin J Naidoo,et al.  Evaluating AM1/d-CB1 for Chemical Glycobiology QM/MM Simulations. , 2014, Journal of chemical theory and computation.

[56]  Cornelis Altona,et al.  Empirical group electronegativities for vicinal NMR proton–proton couplings along a CC bond: Solvent effects and reparameterization of the Haasnoot equation , 1994 .

[57]  J. R. Snyder,et al.  D-Idose: a one- and two-dimensional NMR investigation of solution composition and conformation , 1986 .

[58]  Yuan-Ping Pang,et al.  Polysaccharide elasticity governed by chair–boat transitions of the glucopyranose ring , 1998, Nature.

[59]  P. Sanderson,et al.  Conformational equilibria of alpha-L-iduronate residues in disaccharides derived from heparin. , 1987, The Biochemical journal.

[60]  Herbert M. Pickett,et al.  Conformational structure, energy, and inversion rates of cyclohexane and some related oxanes , 1970 .

[61]  Ulf Ellervik,et al.  Conformational effects due to stereochemistry and C3-substituents in xylopyranoside derivatives as studied by NMR spectroscopy. , 2014, Organic & biomolecular chemistry.

[62]  Ulf Ellervik,et al.  Synthesis, conformation and biology of naphthoxylosides. , 2011, Bioorganic & medicinal chemistry.

[63]  Ulf Ellervik,et al.  Exploration of conformational flexibility and hydrogen bonding of xylosides in different solvents, as a model system for enzyme active site interactions. , 2013, Organic & biomolecular chemistry.

[64]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[65]  Noah S. Bieler,et al.  Orthogonal sampling in free‐energy calculations of residue mutations in a tripeptide: TI versus λ‐LEUS , 2015, J. Comput. Chem..

[66]  Mohsen Tafazzoli,et al.  New Karplus equations for 2JHH, 3JHH, 2JCH, 3JCH, 3JCOCH, 3JCSCH, and 3JCCCH in some aldohexopyranoside derivatives as determined using NMR spectroscopy and density functional theory calculations. , 2007, Carbohydrate research.

[67]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[68]  Benedict M. Sattelle,et al.  Free energy landscapes of iduronic acid and related monosaccharides. , 2010, Journal of the American Chemical Society.

[69]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[70]  Marcello Sega,et al.  Pickett angles and Cremer–Pople coordinates as collective variables for the enhanced sampling of six-membered ring conformations , 2011 .

[71]  William L. Jorgensen,et al.  OPLS all‐atom force field for carbohydrates , 1997 .

[72]  Gabriel Cuevas,et al.  The Anomeric Effect , 1994 .

[73]  J. Zajicek,et al.  Acyclic forms of [1-(13)C]aldohexoses in aqueous solution: quantitation by (13)C NMR and deuterium isotope effects on tautomeric equilibria. , 2001, The Journal of organic chemistry.

[74]  Piotr E Marszalek,et al.  Identification of sugar isomers by single-molecule force spectroscopy. , 2006, Journal of the American Chemical Society.

[75]  Massimo Ragazzi,et al.  A force‐field study of the conformational characteristics of the iduronate ring , 1986, Journal of computational chemistry.

[76]  Massimiliano Bonomi,et al.  Linking well-tempered metadynamics simulations with experiments. , 2010, Biophysical journal.

[77]  A. Laio,et al.  Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. , 2006, Journal of the American Chemical Society.

[78]  Jiye Shi,et al.  Force fields and scoring functions for carbohydrate simulation. , 2015, Carbohydrate research.

[79]  Massimiliano Bonomi,et al.  PLUMED: A portable plugin for free-energy calculations with molecular dynamics , 2009, Comput. Phys. Commun..

[80]  Göran Widmalm,et al.  Hydroxymethyl group conformation in saccharides: structural dependencies of (2)J(HH), (3)J(HH), and (1)J(CH) spin-spin coupling constants. , 2002, The Journal of organic chemistry.

[81]  Pablo G. Debenedetti,et al.  Structure and dynamics in concentrated, amorphous carbohydrate--water systems by molecular dynamics simulation , 1999 .

[82]  G. Davies,et al.  Mapping the conformational itinerary of β-glycosidases by X-ray crystallography , 2003 .

[83]  Robert J Woods,et al.  Dependence of pyranose ring puckering on anomeric configuration: methyl idopyranosides. , 2012, The journal of physical chemistry. B.

[84]  Michael Schlenkrich,et al.  Force field parameters for carbohydrates , 1996 .

[85]  C. Hardacre,et al.  Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: a simulation study. , 2007, The journal of physical chemistry. B.

[86]  Wilfred F. van Gunsteren,et al.  Intramolecular hydrogen-bonding in aqueous carbohydrates as a cause or consequence of conformational preferences: a molecular dynamics study of cellobiose stereoisomers , 2013, European Biophysics Journal.

[87]  Benedict M. Sattelle,et al.  Is N-acetyl-d-glucosamine a rigid 4C1 chair? , 2011, Glycobiology.

[88]  Michael Bolte,et al.  Two stereoisomeric 3I,2II-anhydro-α-cyclodextrins: a molecular dynamics and crystallographic study , 2001 .

[89]  Benedict M. Sattelle,et al.  Less is more when simulating unsulfated glycosaminoglycan 3D‐structure: Comparison of GLYCAM06/TIP3P, PM3‐CARB1/TIP3P, and SCC‐DFTB‐D/TIP3P predictions with experiment , 2010, J. Comput. Chem..

[90]  Piotr E Marszalek,et al.  Molecular dynamics simulations of forced conformational transitions in 1,6-linked polysaccharides. , 2004, Biophysical journal.

[91]  S. J. Angyal,et al.  The Composition and Conformation of Sugars in Solution , 1969 .

[92]  Gregg T Beckham,et al.  How sugars pucker: electronic structure calculations map the kinetic landscape of five biologically paramount monosaccharides and their implications for enzymatic catalysis. , 2014, Journal of the American Chemical Society.

[93]  Robert J Woods,et al.  Carbohydrate force fields , 2012, Wiley interdisciplinary reviews. Computational molecular science.

[94]  Sj Angyal,et al.  Equilibria between pyranoses and furanoses. II. Aldoses , 1972 .

[95]  Vojtech Spiwok,et al.  Conformational free energy surface of alpha-N-acetylneuraminic acid: an interplay between hydrogen bonding and solvation. , 2009, The journal of physical chemistry. B.

[96]  Wojciech Plazinski,et al.  The dynamics of the conformational changes in the hexopyranose ring: a transition path sampling approach , 2014 .

[97]  B. Sattelle,et al.  Does microsecond sugar ring flexing encode 3D-shape and bioactivity in the heparanome? , 2013, Biomacromolecules.

[98]  Roland Stenutz,et al.  Correlated C-C and C-O bond conformations in saccharide hydroxymethyl groups: parametrization and application of redundant 1H-1H, 13C-1H, and 13C-13C NMR J-couplings. , 2004, Journal of the American Chemical Society.

[99]  J. L. Willett,et al.  DFTMD studies of glucose and epimers: anomeric ratios, rotamer populations, and hydration energies. , 2010, Carbohydrate research.

[100]  G. Gallo,et al.  Hydrogen bonding and conformation of glucose and polyglucoses in dimethyl-sulphoxide solution , 1966 .

[101]  I. C. O. B. Nomenclature IUPAC-IUB Commission on Biochemical Nomenclature. Abbreviations and symbols for the description of the conformation of polypeptide chains. Tentative rules (1969). , 1970, Biochemistry.

[102]  M. Rudrum,et al.  10. The structure and conformation of some monosaccharides in solution , 1965 .

[103]  J. F. Foster,et al.  ON THE CONFORMATION OF THE D-GLUCOPYRANOSE RING IN MALTOSE AND IN HIGHER POLYMERS OF D-GLUCOSE , 1963 .

[104]  C. Rovira,et al.  Mechanism of cellulose hydrolysis by inverting GH8 endoglucanases: a QM/MM metadynamics study. , 2009, The journal of physical chemistry. B.

[105]  Benedict M. Sattelle,et al.  Microsecond kinetics in model single- and double-stranded amylose polymers† †Electronic supplementary information (ESI) available: Detailed structural definitions, methodological descriptions, analyses of the simulations and computed and experimental molecular properties are provided. See DOI: 10.10 , 2014, Physical chemistry chemical physics : PCCP.

[106]  F. D. Leeuw,et al.  The relationship between proton-proton NMR coupling constants and substituent electronegativities—I : An empirical generalization of the karplus equation , 1980 .

[107]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[108]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[109]  D. Cremer,et al.  General definition of ring puckering coordinates , 1975 .

[110]  A. Oberhauser,et al.  Atomic levers control pyranose ring conformations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[112]  Benito Casu,et al.  Evidence for conformational equilibrium of the sulfated L-iduronate residue in heparin and in synthetic heparin mono- and oligo-saccharides: NMR and force-field studies , 1986 .

[113]  Igor Tvaroska,et al.  Quantum mechanical and NMR spectroscopy studies on the conformations of the hydroxymethyl and methoxymethyl groups in aldohexosides. , 2002, Carbohydrate research.

[114]  Jesús Jiménez-Barbero,et al.  Conformation of 1,2-O-alkylidenehexopyranoses: tri-O-acetyl derivatives of D-allose and D-gulose , 1986 .

[115]  Matthias Rief,et al.  Single-molecule force spectroscopy on polysaccharides by AFM – nanomechanical fingerprint of α-(1,4)-linked polysaccharides , 1999 .

[116]  W. V. van Gunsteren,et al.  New Interaction Parameters for Oxygen Compounds in the GROMOS Force Field: Improved Pure-Liquid and Solvation Properties for Alcohols, Ethers, Aldehydes, Ketones, Carboxylic Acids, and Esters. , 2011, Journal of chemical theory and computation.