Model calculations for wetting transitions in polymer mixtures

Partially compatible binary mixtures of linear flexible polymers are considered in the presence of a wall which preferentially adsorbs one component. Using a Flory-Huggins type mean field approach, it is shown that in typical cases at two-phase coexistence the wall is always « wet », i.e. coated with a macroscopically thick layer of the preferred phase, and the transition to the non wet state occurs at volume fractions of the order of 1/~N (where N is the chain length) at the coexistence curve. Both first and second order wetting transitions are found, and the variation of the surface layer thickness, surface excess energy and related quantities through the transition is studied. We discuss both the validity of the long wavelength approximation involved in our treatment, and pos- sible fluctuation effects for « critical wetting », comparing our results to Monte Carlo simulations of wetting in Ising models. The relation of our results to previous work and possible experimental consequences are also briefly mentioned.

[1]  J. Nunzi,et al.  Phase separation in polystyrene-poly(vinylmethylether) blends: a a fluorescence emission analysis , 1984 .

[2]  M. Nightingale,et al.  Absence of critical wetting in systems with long-range forces , 1983 .

[3]  R. Koningsveld,et al.  Thermodynamic aspects of polymer compatibility , 1974 .

[4]  R. Lipowsky Upper Critical Dimension for Wetting in Systems with Long-Range Forces , 1984 .

[5]  J. Noolandi,et al.  Interfacial properties of immiscible homopolymer blends in the presence of block copolymers , 1982 .

[6]  M. Moldover,et al.  First‐order wetting transition at a liquid–vapor interface , 1983 .

[7]  J. Krim,et al.  Triple-Point Wetting of Light Molecular Gases on Au(111) Surfaces , 1984 .

[8]  M. Bouchiat,et al.  Weak neutral currents in atomic physics , 1974 .

[9]  P. Tarazona,et al.  Wetting transitions at models of a solid-gas interface , 1983 .

[10]  K. Binder Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures , 1983 .

[11]  K. Binder,et al.  Interfacial profile between coexisting phases of a polymer mixture , 1984 .

[12]  M. Fisher,et al.  Multicriticality of Wetting, Prewetting, and Surface Transitions , 1982 .

[13]  L. Leibler,et al.  Interface in molten polymer mixtures near the consolute point , 1978 .

[14]  E. Helfand Theory of inhomogeneous polymers: Fundamentals of the Gaussian random‐walk model , 1975 .

[15]  R. Lipowsky,et al.  Critical wetting in systems with long-range forces , 1984 .

[16]  P. Gennes,et al.  Qualitative features of polymer demixtion , 1977 .

[17]  E. Helfand,et al.  Theory of the interface between immiscible polymers , 1971 .

[18]  D. E. Sullivan Van der Waals model of adsorption , 1979 .

[19]  P. Gennes Dynamics of fluctuations and spinodal decomposition in polymer blends , 1980 .

[20]  S. Leibler,et al.  Critical Wetting in Three Dimensions , 1983 .

[21]  John W. Cahn,et al.  Critical point wetting , 1977 .

[22]  L. Mcmaster Aspects of Polymer-Polymer Thermodynamics , 1973 .

[23]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[24]  J. Cahn,et al.  Thickness of the Liquid-Vapor Wetting Layer , 1982 .

[25]  P. Flory Principles of polymer chemistry , 1953 .

[26]  P. Pincus,et al.  Surface spinodals and extended wetting in fluids and polymer solutions , 1983 .

[27]  S. Leibler,et al.  Critical wetting : the domain of validity of mean field theory , 1983 .

[28]  J. Seguin,et al.  Wetting Transition in Solid Films: Reflection-High-Energy-Electron-Diffraction Study of Multilayers of C F 4 Adsorbed on Graphite , 1984 .

[29]  K. Binder,et al.  Monte Carlo simulation of wetting transitions in the ferromagnetic Ising model , 1985 .

[30]  J. Cahn,et al.  An Interface Phase Transition: Complete to Partial Wetting , 1980, Science.

[31]  John S. Rowlinson,et al.  Fluid Interfacial Phenomena , 1987 .