Lead (II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: Application to lead content determination in environmental samples

[1]  A. Abbaspour,et al.  A highly selective and sensitive disposable carbon composite PVC-based membrane for determination of lead ion in environmental samples. , 2010, Journal of hazardous materials.

[2]  M. Ganjali,et al.  Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica. , 2010, Journal of hazardous materials.

[3]  M. Ganjali,et al.  Multi-walled carbon nanotubes (MWCNTs) and room temperature ionic liquids (RTILs) carbon paste Er(III) sensor based on a new derivative of dansyl chloride , 2009 .

[4]  Mojtaba Shamsipur,et al.  Lead-selective poly(vinyl chloride) electrodes based on some synthesized benzo-substituted macrocyclic diamides. , 2009, Journal of hazardous materials.

[5]  Ewa Bulska,et al.  Poly(n-butyl acrylate) based lead (II) selective electrodes. , 2009, Talanta.

[6]  Y. Chai,et al.  A highly selective polymeric membrane barium(II) electrode based on a macrocyclic tetrabasic ligand as neutral carrier , 2009, Analytical and bioanalytical chemistry.

[7]  Y. Chai,et al.  Organically nanoporous silica gel based on carbon paste electrode for potentiometric detection of trace Cr(III). , 2009, Analytica chimica acta.

[8]  K. Vytras,et al.  New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes. , 2009, Analytical chemistry.

[9]  W. Qin,et al.  Nanomaterial/ionophore-based electrode for anodic stripping voltammetric determination of lead: an electrochemical sensing platform toward heavy metals. , 2009, Analytical chemistry.

[10]  Mei-Rong Huang,et al.  Lead(II) ion-selective electrode based on polyaminoanthraquinone particles with intrinsic conductivity. , 2009, Talanta.

[11]  Karel Vytras,et al.  Anodic stripping voltammetric measurement of trace heavy metals at antimony film carbon paste electrode , 2009 .

[12]  N. Kim,et al.  Synthesis and characterization of polyaniline‐multiwalled carbon nanotube nanocomposites in the presence of sodium dodecyl sulfate , 2008 .

[13]  Rajendra N. Goyal,et al.  Sensors for 5-hydroxytryptamine and 5-hydroxyindole acetic acid based on nanomaterial modified electrodes , 2008 .

[14]  T. Nyokong,et al.  Electrocatalytic Detection of Amitrole on the Multi-Walled Carbon Nanotube – Iron (II) tetra-aminophthalocyanine Platform , 2008, Sensors.

[15]  S. Bliznakov,et al.  Electrochemical method for quantitative determination of trace amounts of lead. , 2008, Analytical chemistry.

[16]  K. Vytras,et al.  Functionalised resin-modified carbon paste sensor for the voltammetric determination of Pb(II) within a wide concentration range , 2008 .

[17]  F. Rius,et al.  Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. , 2008, Analytical chemistry.

[18]  S. Nabi,et al.  Sorption of Metal Ions on Acrylamidezirconium (IV) Arsenate and its Synthesis of PVC based Lead (II) Selective Electrode , 2008 .

[19]  M. Ganjali,et al.  Use of organofunctionalized nanoporous silica gel to improve the lifetime of carbon paste electrode for determination of copper(II) ions. , 2007, Analytica chimica acta.

[20]  Zahra Pilehvari,et al.  A novel wire-type lead-selective electrode based on bis (1'-hydroxy-2'-acetonaphthone)-2,2'-diiminodiethylamine. , 2007, Annali di chimica.

[21]  Mohammad Reza Ganjali,et al.  Carbon Paste Electrode Modified with Functionalized Nanoporous Silica Gel as a New Sensor for Determination of Silver Ion , 2007, Electroanalysis.

[22]  C. Hong,et al.  Effects of oxidative conditions on properties of multi-walled carbon nanotubes in polymer nanocomposites , 2007 .

[23]  S. Mittal,et al.  Potentiometric performance of 2-aminothiophenol based dipodal ionophore as a silver sensing material , 2007 .

[24]  M. Prato,et al.  Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. , 2007, Nature nanotechnology.

[25]  M. Ganjali,et al.  Fabrication of a highly selective Eu(III) membrane sensor based on a new S–N hexadentates Schiff's base , 2007 .

[26]  M. Ganjali,et al.  A novel Er(III) sensor based on a new hydrazone for the monitoring of Er(III) ions , 2006 .

[27]  Pankaj Kumar,et al.  PVC-based membranes of N,N' -dibenzyl -1,4,10,13 -tetraoxa -7,16 -diazacyclooctadecane as Pb(II)-selective sensor , 2006 .

[28]  M. Prato,et al.  Luminescence of Functionalized Carbon Nanotubes as a Tool to Monitor Bundle Formation and Dissociation in Water: The Effect of Plasmid‐DNA Complexation , 2006 .

[29]  A. Gopalan,et al.  Gold nanoparticles dispersed into poly(aminothiophenol) as a novel electrocatalyst—Fabrication of modified electrode and evaluation of electrocatalytic activities for dioxygen reduction , 2006 .

[30]  M. Prato,et al.  Applications of carbon nanotubes in drug delivery. , 2005, Current opinion in chemical biology.

[31]  N. Chaniotakis,et al.  Thick membrane, solid contact ion selective electrode for the detection of lead at picomolar levels. , 2005, Analytical chemistry.

[32]  J Justin Gooding,et al.  Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties. , 2005, Chemical communications.

[33]  Maurizio Prato,et al.  Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. , 2005, Journal of the American Chemical Society.

[34]  K. Vytras,et al.  A study on the determination of chromium as chromate at a carbon paste electrode modified with surfactants. , 2004, Talanta.

[35]  M. Prato,et al.  Functionalized carbon nanotubes for plasmid DNA gene delivery. , 2004, Angewandte Chemie.

[36]  Ya‐Ping Sun,et al.  Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized with Matrix Polymer , 2003 .

[37]  K. Vytras,et al.  Simple and rapid determination of iodide in table salt by stripping potentiometry at a carbon-paste electrode , 2002, Analytical and bioanalytical chemistry.

[38]  R. E. Gyurcsányi,et al.  Picomolar detection limits with current-polarized Pb2+ ion-selective membranes. , 2001, Analytical chemistry.

[39]  D. Schuster,et al.  High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. , 2001, Journal of the American Chemical Society.

[40]  Bruce Grieve,et al.  Electrochemical issues in impedance tomography , 2000 .

[41]  P. Bühlmann,et al.  Selectivity of potentiometric ion sensors. , 2000, Analytical chemistry.

[42]  D. Diamond,et al.  Lead-Selective Electrodes Based on Calixarene Phosphine Oxide Derivatives , 1999 .

[43]  V. Veksler Electron-exchange mechanisms of the secondary ion emission of metals and some incompatible experimental data , 1998 .

[44]  E. Pretsch,et al.  Large Improvement of the Lower Detection Limit of Ion-Selective Polymer Membrane Electrodes , 1997 .

[45]  Y. Umezawa,et al.  Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting KA,Bpot values (Technical Report) , 1995 .

[46]  Markus Lerchi,et al.  Lead-selective bulk optodes based on neutral ionophores with subnanomolar detection limits , 1992 .

[47]  S. Kamata,et al.  Copper(II)-selective electrode using thiuram disulfide neutral carriers , 1988 .

[48]  Jean-Pierre Sauvage,et al.  Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .

[49]  M. Yamazaki,et al.  Simultaneous determination of nickel, lead, zinc, and copper in citrus leaves and rice flour by liquid chromatography with hexamethylenedithiocarbamate extraction. , 1985, Analytical chemistry.

[50]  Alain Walcarius,et al.  Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50‐Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis , 2009 .

[51]  Wassana Yantasee,et al.  Carbon nanotubes based nanoelectrode arrays: Fabrication, evaluation, and application in voltammetric analysis , 2005 .