Erdős–Ko–Rado and Hilton–Milner Type Theorems for Intersecting Chains in Posets

t-intersecting k-chains in posets using the kernel method. These results are common generalizations of the original EKR and HM theorems, and our earlier results for intersecting k-chains in the Boolean algebra. For intersecting k-chains in the c-truncated Boolean algebra we also prove an exact EKR type theorem (for all n) using the shift method. An application of the general theorem gives a similar result for t-intersecting chains if n is large enough.

[1]  Peter Frankl,et al.  Erdös–Ko–Rado Theorem—22 Years Later , 1983 .

[2]  Richard M. Wilson,et al.  The exact bound in the Erdös-Ko-Rado theorem , 1984, Comb..

[3]  Péter L. Erdös,et al.  A Group-Theoretic Setting for Some Intersecting Sperner Families , 1992, Comb. Probab. Comput..

[4]  Norihide Tokushige,et al.  The Erdős–Ko–Rado Theorem for Integer Sequences , 1999, Comb..

[5]  D. Miklós,et al.  Great intersecting families of edges in hereditary hypergraphs , 1984, Discret. Math..

[6]  Rudolf Ahlswede,et al.  The Complete Nontrivial-Intersection Theorem for Systems of Finite Sets , 1996, J. Comb. Theory, Ser. A.

[7]  L. Lovász Combinatorial problems and exercises , 1979 .

[8]  Z. Füredi Surveys in Combinatorics, 1991: “Turán Type Problems” , 1991 .

[9]  Peter Frankl,et al.  On intersecting families of finite sets , 1978, Bulletin of the Australian Mathematical Society.

[10]  Bruce Rothschild,et al.  A Generalization of the Erdös-Ko-Rado Theorem on Finite Set Systems , 1973, J. Comb. Theory, Ser. A.

[11]  Rudolf Ahlswede,et al.  Incomparability and Intersection Properties of Boolean Interval Lattices and Chain Posets , 1996, Eur. J. Comb..

[12]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[13]  Rudolf Ahlswede,et al.  The Complete Intersection Theorem for Systems of Finite Sets , 1997, Eur. J. Comb..

[14]  A. J. W. Hilton,et al.  SOME INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1967 .

[15]  László A. Székely,et al.  On Intersecting Chains in Boolean Algebras , 1994, Comb. Probab. Comput..

[16]  P. Erdös,et al.  A combinatorial theorem , 1950 .