Stability of up-milling and down-milling, part 1: alternative analytical methods

Abstract The dynamic stability of the milling process is investigated through a single degree of freedom mechanical model. Two alternative analytical methods are introduced, both based on finite dimensional discrete map representations of the governing time periodic delay-differential equation. Stability charts and chatter frequencies are determined for partial immersion up- and down-milling, and for full immersion milling operations. A special duality property of stability regions for up- and down-milling is shown and explained.

[1]  B. Mann,et al.  Stability of Interrupted Cutting by Temporal Finite Element Analysis , 2003 .

[2]  Jon R. Pratt,et al.  The Stability of Low Radial Immersion Milling , 2000 .

[3]  Yusuf Altintas,et al.  Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems , 1998 .

[4]  P. Bayly,et al.  Stability Analysis of Interrupted Cutting With Finite Time in the Cut , 2000, Manufacturing Engineering.

[5]  D. Peters,et al.  hp-version finite elements for the space-time domain , 1988 .

[6]  D. Segalman,et al.  Suppression of Regenerative Chatter via Impedance Modulation , 2000 .

[7]  Jiří Tlustý,et al.  Manufacturing processes and equipment , 1999 .

[8]  Balakumar Balachandran,et al.  Nonlinear dynamics of milling processes , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  F. W. Taylor The Art of Cutting Metals , 1907 .

[10]  Jon R. Pratt,et al.  Stability Prediction for Low Radial Immersion Milling , 2002 .

[11]  J. Hale Theory of Functional Differential Equations , 1977 .

[12]  Yusuf Altintas,et al.  Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation , 1998 .

[13]  I. E. Minis,et al.  A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling , 1993 .

[14]  Gábor Stépán,et al.  Multiple chatter frequencies in milling processes , 2003 .

[15]  Gábor Stépán,et al.  Stability of High-Speed Milling , 2000, Nonlinear Dynamics and Stochastic Mechanics.

[16]  Tony L. Schmitz,et al.  Improving High-Speed Machining Material Removal Rates by Rapid Dynamic Analysis , 2001 .

[17]  Balakumar Balachandran,et al.  Dynamics and stability of milling process , 2001 .

[18]  Yusuf Altintas,et al.  Analytical Prediction of Stability Lobes in Milling , 1995 .

[19]  O. Daněk,et al.  Selbsterregte Schwingungen : An Werkzeugmaschinen , 1962 .

[20]  S. Smith,et al.  An Overview of Modeling and Simulation of the Milling Process , 1991 .

[21]  Jifang Tian,et al.  Chatter Instability in Milling Systems with Flexible Rotating Spindles—A New Theoretical Approach , 2001 .

[22]  S. A. Tobias,et al.  Theory of finite amplitude machine tool instability , 1984 .

[23]  Gábor Stépán,et al.  Semi‐discretization method for delayed systems , 2002 .

[24]  Gábor Stépán,et al.  Modelling nonlinear regenerative effects in metal cutting , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  S. A. Tobias Machine-tool vibration , 1965 .

[26]  Francis C. Moon,et al.  Dynamics and chaos in manufacturing processes , 1998 .

[27]  Leonard Meirovitch,et al.  Elements Of Vibration Analysis , 1986 .

[28]  G. Stépán Retarded dynamical systems : stability and characteristic functions , 1989 .